Morpholino
MO3-plcg1
- ID
- ZDB-MRPHLNO-051214-1
- Name
- MO3-plcg1
- Previous Names
-
- MO4-plcg1
- Target
- Sequence
-
5' - ATTAGCATAGGGAACTTACTTTCG - 3'
- Disclaimer
- Although ZFIN verifies reagent sequence data, we recommend that you conduct independent sequence analysis before ordering any reagent.
- Note
-
This morpholino sequence is based on sequence of the intron-exon boundaries of the plcg1 gene in the Tg(fli1:EGFP)y1 (EK) line. The mismatch with Ensembl builds (Zv5, Zv8) may reflect a polymorphism.
- Genome Resources
- None
Target Location
Genomic Features
No data available
Expression
Gene expression in Wild Types + MO3-plcg1
No data available
Phenotype
Phenotype resulting from MO3-plcg1
1 - 5 of 10 Show all
Phenotype of all Fish created by or utilizing MO3-plcg1
1 - 5 of 30 Show all
Citations
- Bastos de Oliveira, M., Meier, K., Jung, S., Bartels-Klein, E., Coxam, B., Geudens, I., Szymborska, A., Skoczylas, R., Fechner, I., Koltowska, K., Gerhardt, H. (2021) Vasohibin-1 selectively regulates secondary sprouting and lymphangiogenesis in the zebrafish trunk. Development (Cambridge, England). 148(4):
- Mauri, C., van Impel, A., Mackay, E.W., Schulte-Merker, S. (2021) The adaptor protein Grb2b is an essential modulator for lympho-venous sprout formation in the zebrafish trunk. Angiogenesis. 24(2):345-362
- Kärpanen, T., Padberg, Y., van de Pavert, S.A., Dierkes, C., Morooka, N., Peterson-Maduro, J., van de Hoek, G., Adrian, M., Mochizuki, N., Sekiguchi, K., Kiefer, F., Schulte, D., Schulte-Merker, S. (2017) An Evolutionarily Conserved Role for Polydom/Svep1 During Lymphatic Vessel Formation. Circulation research. 120(8):1263-1275
- Kartopawiro, J., Bower, N.I., Karnezis, T., Kazenwadel, J., Betterman, K.L., Lesieur, E., Koltowska, K., Astin, J., Crosier, P., Vermeren, S., Achen, M.G., Stacker, S.A., Smith, K.A., Harvey, N.L., François, M., and Hogan, B.M. (2014) Arap3 is dysregulated in a mouse model of hypotrichosis-lymphedema-telangiectasia and regulates lymphatic vascular development. Human molecular genetics. 23(5):1286-97
- Kim, S.H., Schmitt, C.E., Woolls, M.J., Holland, M.B., Kim, J.D., and Jin, S.W. (2013) Vascular Endothelial Growth Factor Signaling Regulates the Segregation of Artery and Vein via ERK Activity during Vascular Development. Biochemical and Biophysical Research Communications. 430(4):1212-1216
- Cha, Y.R., Fujita, M., Butler, M., Isogai, S., Kochhan, E., Siekmann, A.F., and Weinstein, B.M. (2012) Chemokine Signaling Directs Trunk Lymphatic Network Formation along the Preexisting Blood Vasculature. Developmental Cell. 22(4):824-836
- Pan, W., Pham, V.N., Stratman, A.N., Castranova, D., Kamei, M., Kidd, K.R., Lo, B.D., Shaw, K.M., Torres-Vazquez, J., Mikelis, C.M., Gutkind, J.S., Davis, G.E., and Weinstein, B.M. (2012) CDP-diacylglycerol synthetase-controlled phosphoinositide availability limits VEGFA signaling and vascular morphogenesis. Blood. 120(2):489-498
- Lim, A.H., Suli, A., Yaniv, K., Weinstein, B., Li, D.Y., and Chien, C.B. (2011) Motoneurons are essential for vascular pathfinding. Development (Cambridge, England). 138(17):3847-3857
- Ren, X., Gomez, G.A., Zhang, B., and Lin, S. (2010) Scl isoforms act downstream of etsrp to specify angioblasts and definitive hematopoietic stem cells. Blood. 115(26):5338-5346
- Burns, C.E., Galloway, J.L., Smith, A.C., Keefe, M.D., Cashman, T.J., Paik, E.J., Mayhall, E.A., Amsterdam, A.H., and Zon, L.I. (2009) A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence. Blood. 113(23):5776-5782
1 - 10 of 15
Show