Gene
six1a
- ID
- ZDB-GENE-040718-155
- Name
- SIX homeobox 1a
- Symbol
- six1a Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 13 Mapping Details/Browsers
- Description
- Enables DNA-binding transcription factor activity, RNA polymerase II-specific. Acts upstream of or within regulation of inner ear receptor cell differentiation; regulation of skeletal muscle cell proliferation; and skeletal muscle fiber development. Predicted to be located in cytoplasm. Predicted to be part of transcription regulator complex. Predicted to be active in nucleus. Is expressed in several structures, including anterior migratory muscle precursor stream; middle migratory muscle precursor stream; musculature system; nervous system; and posterior migratory muscle precursor stream. Human ortholog(s) of this gene implicated in autosomal dominant nonsyndromic deafness 23; branchiootorenal syndrome; and nephroblastoma. Orthologous to human SIX1 (SIX homeobox 1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 10 figures from 5 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:7154851 (9 images)
Wild Type Expression Summary
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la011534Tg | Transgenic insertion | Unknown | Unknown | DNA | |
oz8 | Allele with one delins | Unknown | Frameshift | CRISPR | |
oz9 | Allele with one insertion | Unknown | Unknown | CRISPR | |
sa17539 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 4 of 4
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-six1a | (3) | |
CRISPR2-six1a | Talbot et al., 2019 | |
MO1-six1a | N/A | Nord et al., 2013 |
MO2-six1a | N/A | O'Brien et al., 2014 |
1 - 4 of 4
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
autosomal dominant nonsyndromic deafness 23 | Alliance | Deafness, autosomal dominant 23 | 605192 |
branchiootic syndrome | Alliance | Branchiootic syndrome 3 | 608389 |
1 - 2 of 2
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Homedomain-like superfamily | Homeobox, conserved site | Homeobox protein SIX1, N-terminal SD domain | Homeodomain | KN homeodomain |
---|---|---|---|---|---|---|---|
UniProtKB:A0A8M9QFC5 | InterPro | 283 | |||||
UniProtKB:Q6DHF9 | InterPro | 283 |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-202M24 | ZFIN Curated Data | |
Encodes | EST | IMAGE:7154851 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:92332 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001009904 (1) | 1610 nt | ||
Genomic | GenBank:BX537123 (1) | 202967 nt | ||
Polypeptide | UniProtKB:A0A8M9QFC5 (1) | 283 aa |
- Bell, J.M., Turner, E.M., Biesemeyer, C., Vanderbeck, M.M., Hendricks, R., McGraw, H.F. (2024) foxg1a is required for hair cell development and regeneration in the zebrafish lateral line. Biology Open. 13(9):
- Megerson, E., Kuehn, M., Leifer, B., Bell, J.M., Snyder, J.L., McGraw, H.F. (2023) Kremen1 regulates the regenerative capacity of support cells and mechanosensory hair cells in the zebrafish lateral line. iScience. 27:108678108678
- Talbot, J.C., Teets, E.M., Ratnayake, D., Duy, P.Q., Currie, P.D., Amacher, S.L. (2019) Muscle precursor cell movements in zebrafish are dynamic and require six-family genes. Development (Cambridge, England). 146(10):
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Gómez-Marín, C., Tena, J.J., Acemel, R.D., López-Mayorga, M., Naranjo, S., de la Calle-Mustienes, E., Maeso, I., Beccari, L., Aneas, I., Vielmas, E., Bovolenta, P., Nobrega, M.A., Carvajal, J., Gómez-Skarmeta, J.L. (2015) Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders. Proceedings of the National Academy of Sciences of the United States of America. 112(24):7542-7
- Ogawa, Y., Shiraki, T., Kojima, D., Fukada, Y. (2015) Homeobox transcription factor Six7 governs expression of green opsin genes in zebrafish. Proceedings. Biological sciences. 282(1812):20150659
- Zhang, H., Wang, X., Lv, K., Gao, S., Wang, G., Fan, C., Zhang, X.A., Yan, J. (2015) Time Point-based Integrative Analyses of Deep-transcriptome Identify Four Signal Pathways in Blastemal Regeneration of Zebrafish Lower Jaw. Stem cells (Dayton, Ohio). 33(3):806-18
- O'Brien, J.H., Hernandez-Lagunas, L., Artinger, K.B., Ford, H.L. (2014) MicroRNA-30a regulates zebrafish myogenesis through targeting the transcription factor Six1. Journal of Cell Science. 127(Pt 10):2291-301
- Talbot, J.C., Amacher, S.L. (2014) A Streamlined CRISPR Pipeline to Reliably Generate Zebrafish Frameshifting Alleles. Zebrafish. 11:583-585
- Nord, H., Skalman, L.N., and von Hofsten, J. (2013) Six1 regulates proliferation of Pax7-positive muscle progenitors in zebrafish. Journal of Cell Science. 126(Pt 8):1868-80
1 - 10 of 17
Show