Gene
mespba
- ID
- ZDB-GENE-000406-9
- Name
- mesoderm posterior ba
- Symbol
- mespba Nomenclature History
- Previous Names
-
- mesp-b
- mespb
- Type
- protein_coding_gene
- Location
- Chr: 7 Mapping Details/Browsers
- Description
- Predicted to enable DNA-binding transcription factor activity, RNA polymerase II-specific and RNA polymerase II cis-regulatory region sequence-specific DNA binding activity. Acts upstream of or within several processes, including blood vessel endothelial cell fate specification; regionalization; and response to retinoic acid. Predicted to be active in nucleus. Is expressed in paraxial mesoderm; presumptive paraxial mesoderm; somite; and telencephalon. Human ortholog(s) of this gene implicated in myocardial infarction. Orthologous to human MESP1 (mesoderm posterior bHLH transcription factor 1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 54 figures from 37 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- 1 Figure from Deshwar et al., 2016
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
kt1004 | Allele with one delins | Unknown | Unknown | TALEN |
1 - 1 of 1
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
MO1-mespba | N/A | (5) |
MO2-mespba | N/A | Windner et al., 2015 |
TALEN1-mespba | Yabe et al., 2016 |
1 - 3 of 3
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Helix-loop-helix DNA-binding domain superfamily | Mesogenin/MesP | Myc-type, basic helix-loop-helix (bHLH) domain |
---|---|---|---|---|---|
UniProtKB:Q9IB69 | InterPro | 236 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
mespba-201
(1)
|
Ensembl | 851 nt | ||
mRNA |
mespba-202
(1)
|
Ensembl | 1,032 nt |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(hsp70l:mespba-MYC) |
|
| 1 | (2) | |
Tg(UAS:mespba) |
|
| 1 | Yabe et al., 2016 |
1 - 2 of 2
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-276A23 | ZFIN Curated Data | |
Encodes | cDNA | MGC:195190 | ZFIN Curated Data | |
Encodes | cDNA | MGC:195204 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_131552 (1) | 929 nt | ||
Genomic | GenBank:CR848709 (1) | 153072 nt | ||
Polypeptide | UniProtKB:Q9IB69 (1) | 236 aa |
- Utsumi, H., Yabe, T., Koshida, S., Yamashita, A., Takada, S. (2024) Deficiency of mastl, a mitotic regulator, results in cell detachment from developing tissues of zebrafish embryos. Frontiers in cell and developmental biology. 12:13756551375655
- Zhang, W., Scerbo, P., Delagrange, M., Candat, V., Mayr, V., Vriz, S., Distel, M., Ducos, B., Bensimon, D. (2022) Fgf8 dynamics and critical slowing down may account for the temperature independence of somitogenesis. Communications biology. 5:113
- Prajapati, R.S., Mitter, R., Vezzaro, A., Ish-Horowicz, D. (2020) Greb1 is required for axial elongation and segmentation in vertebrate embryos. Biology Open. 9(2):
- Ban, H., Yokota, D., Otosaka, S., Kikuchi, M., Kinoshita, H., Fujino, Y., Yabe, T., Ovara, H., Izuka, A., Akama, K., Yamasu, K., Takada, S., Kawamura, A. (2019) Transcriptional autoregulation of zebrafish tbx6 is required for somite segmentation. Development (Cambridge, England). 146(18):
- Keskin, S., Simsek, M.F., Vu, H.T., Yang, C., Devoto, S.H., Ay, A., Özbudak, E.M. (2019) Regulatory Network of the Scoliosis-Associated Genes Establishes Rostrocaudal Patterning of Somites in Zebrafish. iScience. 12:247-259
- Tai, Z., Guan, P., Wang, Z., Li, L., Zhang, T., Li, G., Liu, J.X. (2019) Common responses of fish embryos to metals: an integrated analysis of transcriptomes and methylomes in zebrafish embryos under the stress of copper ions or silver nanoparticles. Metallomics : integrated biometal science. 11(9):1452-1464
- Wang, Z., Ding, Z.C., Xu, Q.H., Liu, J.X. (2019) Metabolism responses to silver nanoparticles stresses during zebrafish embryogenesis. Elsevier Science. 222:991-1002
- Ishimatsu, K., Hiscock, T.W., Collins, Z.M., Sari, D.W.K., Lischer, K., Richmond, D.L., Bessho, Y., Matsui, T., Megason, S.G. (2018) Size-reduced embryos reveal a gradient scaling based mechanism for zebrafish somite formation. Development (Cambridge, England). 145(11)
- Kinoshita, H., Ohgane, N., Fujino, Y., Yabe, T., Ovara, H., Yokota, D., Izuka, A., Kage, D., Yamasu, K., Takada, S., Kawamura, A. (2018) Functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior presomitic mesoderm in zebrafish. Mechanisms of Development. 152:21-31
- LLeras Forero, L., Narayanan, R., Huitema, L.F.A., VanBergen, M., Apschner, A., Peterson-Maduro, J., Logister, I., Valentin, G., Morelli, L.G., Oates, A., Schulte-Merker, S. (2018) Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock. eLIFE. 7
1 - 10 of 55
Show