Gene
mnx1
- ID
- ZDB-GENE-040409-1
- Name
- motor neuron and pancreas homeobox 1
- Symbol
- mnx1 Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 7 Mapping Details/Browsers
- Description
- Predicted to enable DNA-binding transcription factor activity and sequence-specific double-stranded DNA binding activity. Acts upstream of or within spinal cord motor neuron cell fate specification and type B pancreatic cell differentiation. Predicted to be active in nucleus. Is expressed in several structures, including central nervous system; endoderm; mesoderm; neurons; and pancreatic system. Human ortholog(s) of this gene implicated in Currarino syndrome. Orthologous to human MNX1 (motor neuron and pancreas homeobox 1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 39 figures from 26 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- 11 figures from 3 publications
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
No data available
Targeting Reagent | Created Alleles | Citations |
---|---|---|
MO1-mnx1 | N/A | (2) |
MO2-mnx1 | N/A | (7) |
MO3-mnx1 | N/A | Shestopalov et al., 2012 |
MO4-mnx1 | N/A | Shestopalov et al., 2012 |
MO5-mnx1 | N/A | (3) |
1 - 5 of 5
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
Currarino syndrome | Alliance | Currarino syndrome | 176450 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Homedomain-like superfamily | Homeobox, conserved site | Homeobox protein MNX1/Ceh-12 | Homeodomain | Homeodomain, metazoa |
---|---|---|---|---|---|---|---|
UniProtKB:Q6SYZ1 | InterPro | 311 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(mnx1:GFP) |
|
| 1 | (187) | |
Tg(mnx1:mGFP) |
|
| 1 | (13) | |
Tg1(-3.1mnx1:GFP) |
|
| 1 | (5) | |
Tg1(mnx1:GAL4) |
|
| 1 | (8) | |
Tg1(mnx1-hsp70l:GFP) |
|
| 1 | (3) | |
Tg2(-3.1mnx1:GFP) |
|
| 1 | (2) | |
Tg(-2.6mnx1:EGFP) |
|
| 1 | (2) | |
Tg(-2.6mnx1:GFP) |
|
| 1 | (7) | |
Tg2(mnx1:GAL4) |
|
| 1 | (2) | |
Tg2(mnx1:GAL4-VP16) |
|
| 1 | Laird et al., 2016 |
1 - 10 of 68
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-266O5 | ZFIN Curated Data | |
Encodes | cDNA | MGC:112174 | ZFIN Curated Data |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001009885 (1) | 1486 nt | ||
Genomic | GenBank:BX247878 (1) | 190715 nt | ||
Polypeptide | UniProtKB:Q6SYZ1 (1) | 311 aa |
- Zebrafish Nomenclature Committee (2025) Nomenclature Data Curation (2025). Nomenclature Committee Submission.
- Lu, H., Twan, W.K., Ikawa, Y., Khare, V., Mukherjee, I., Schou, K.B., Chua, K.X., Aqasha, A., Chakrabarti, S., Hamada, H., Roy, S. (2024) Localisation and function of key axonemal microtubule inner proteins and dynein docking complex members reveal extensive diversity among vertebrate motile cilia. Development (Cambridge, England). 151(14):
- Cao, S., Dong, Z., Dong, X., Jia, W., Zhou, F., Zhao, Q. (2023) Zebrafish sox2 Is Required for the Swim Bladder Inflation by Controlling the Swim-Up Behavior. Zebrafish. 20:101810-18
- England, S.J., Rusnock, A.K., Mujcic, A., Kowalchuk, A., de Jager, S., Hilinski, W.C., Juárez-Morales, J.L., Smith, M.E., Grieb, G., Banerjee, S., Lewis, K.E. (2023) Molecular analyses of zebrafish V0v spinal interneurons and identification of transcriptional regulators downstream of Evx1 and Evx2 in these cells. Neural Development. 18:88
- Sugitani, K., Mokuya, T., Homma, S., Maeda, M., Konno, A., Ogai, K. (2023) Specific Activation of Yamanaka Factors via HSF1 Signaling in the Early Stage of Zebrafish Optic Nerve Regeneration. International Journal of Molecular Sciences. 24(4):
- Barker, C.M., Miles, K.D., Doll, C.A. (2022) Fmrp regulates neuronal balance in embryonic motor circuit formation. Frontiers in neuroscience. 16:962901
- Egashira, Y., Kumade, A., Ojida, A., Ono, F. (2022) Spontaneously recycling synaptic vesicles constitute readily releasable vesicles in intact neuromuscular synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 42(17):3523-3536
- Fang, Y., Wan, J.P., Zhang, R.J., Sun, F., Yang, L., Zhao, S.X., Dong, M., Song, H.D. (2022) Tpo knockout in zebrafish partially recapitulates clinical manifestations of congenital hypothyroidism and reveals the involvement of TH in proper development of glucose homeostasis. General and comparative endocrinology. 323-324:114033
- Flex, E., Albadri, S., Radio, F.C., Cecchetti, S., Lauri, A., Priolo, M., Kissopoulos, M., Carpentieri, G., Fasano, G., Venditti, M., Magliocca, V., Bellacchio, E., Welch, C.L., Colombo, P.C., Kochav, S.M., Chang, R., Barrick, R., Trivisano, M., Micalizzi, A., Borghi, R., Messina, E., Mancini, C., Pizzi, S., De Santis, F., Rosello, M., Specchio, N., Compagnucci, C., McWalter, K., Chung, W.K., Del Bene, F., Tartaglia, M. (2022) Dominantly acting KIF5B variants with pleiotropic cellular consequences cause variable clinical phenotypes. Human molecular genetics. 32(3):473-488
- Habicher, J., Manuel, R., Pedroni, A., Ferebee, C., Ampatzis, K., Boije, H. (2022) A new transgenic reporter line reveals expression of protocadherin 9 at a cellular level within the zebrafish central nervous system. Gene expression patterns : GEP. 44:119246
1 - 10 of 108
Show