Gene
fbn2b
- ID
- ZDB-GENE-090112-3
- Name
- fibrillin 2b
- Symbol
- fbn2b Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 22 Mapping Details/Browsers
- Description
- Predicted to enable hormone activity. Predicted to be an extracellular matrix structural constituent. Acts upstream of or within several processes, including circulatory system development; notochord morphogenesis; and regulation of cell proliferation involved in heart valve morphogenesis. Predicted to be located in microfibril. Predicted to be active in extracellular matrix and extracellular region. Is expressed in several structures, including epidermis; hypoblast; hypochord; immature eye; and paraxial mesoderm. Human ortholog(s) of this gene implicated in congenital contractural arachnodactyly and scoliosis. Orthologous to human FBN2 (fibrillin 2).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 9 figures from 4 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- 13 figures from 5 publications
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
gw1 | Allele with one point mutation | Unknown | Premature Stop | not specified | |
la014257Tg | Transgenic insertion | Unknown | Unknown | DNA | |
la022362Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa12625 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa13470 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa16275 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa24062 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa43757 | Allele with one point mutation | Unknown | Splice Site | ENU | |
te382a | Allele with one point mutation | Unknown | Missense | ENU | |
tt239 | unknown | Unknown | Unknown | ENU |
1 - 10 of 10
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-fbn2b | (2) | |
CRISPR2-fbn2b | (2) | |
MO1-fbn2b | N/A | (3) |
MO2-fbn2b | N/A | Gansner et al., 2008 |
MO3-fbn2b | N/A | Carney et al., 2010 |
1 - 5 of 5
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
congenital contractural arachnodactyly | Alliance | Contractural arachnodactyly, congenital | 121050 |
Macular degeneration, early-onset | 616118 |
1 - 2 of 2
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Complement Clr-like EGF domain | EGF domain | EGF-like calcium-binding, conserved site | EGF-like calcium-binding domain | EGF-like, conserved site | EGF-like domain | EGF-type aspartate/asparagine hydroxylation site | Fibrillin 1, unique N-terminal domain | Fibrillin, first EGF domain | Growth factor receptor cysteine-rich domain superfamily | NOTCH1 EGF-like calcium-binding domain | TB domain | TGF-beta binding (TB) domain superfamily | von Willebrand factor C/EGF & Fibrillin |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:B6CS38 | InterPro | 2868 | ||||||||||||||
UniProtKB:A0A0G2KQ62 | InterPro | 2868 |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-241F21 | ZFIN Curated Data | |
Contained in | Fosmid | ZFOS-412G11 | ZFIN Curated Data | |
Encodes | EST | wz12651 |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001135790 (1) | 8607 nt | ||
Genomic | GenBank:CR751224 (1) | 129800 nt | ||
Polypeptide | UniProtKB:A0A0G2KQ62 (1) | 2868 aa |
- Kolb, J., Tsata, V., John, N., Kim, K., Möckel, C., Rosso, G., Kurbel, V., Parmar, A., Sharma, G., Karandasheva, K., Abuhattum, S., Lyraki, O., Beck, T., Müller, P., Schlüßler, R., Frischknecht, R., Wehner, A., Krombholz, N., Steigenberger, B., Beis, D., Takeoka, A., Blümcke, I., Möllmert, S., Singh, K., Guck, J., Kobow, K., Wehner, D. (2023) Small leucine-rich proteoglycans inhibit CNS regeneration by modifying the structural and mechanical properties of the lesion environment. Nature communications. 14:68146814
- Fazio, M., van Rooijen, E., Dang, M., van de Hoek, G., Ablain, J., Mito, J.K., Yang, S., Thomas, A., Michael, J., Fabo, T., Modhurima, R., Pessina, P., Kaufman, C.K., Zhou, Y., White, R.M., Zon, L.I. (2021) SATB2 induction of a neural crest mesenchyme-like program drives melanoma invasion and drug resistance. eLIFE. 10:
- Mukherjee, D., Wagh, G., Mokalled, M.H., Kontarakis, Z., Dickson, A.L., Rayrikar, A., Günther, S., Poss, K.D., Stainier, D.Y.R., Patra, C. (2020) Ccn2a/Ctgfa is an injury-induced matricellular factor that promotes cardiac regeneration in zebrafish. Development (Cambridge, England). 148(2):
- Garcia-Puig, A., Mosquera, J.L., Jiménez-Delgado, S., García-Pastor, C., Jorba, I., Navajas, D., Canals, F., Raya, A. (2019) Proteomics analysis of extracellular matrix remodeling during zebrafish heart regeneration. Molecular & cellular proteomics : MCP. 18(9):1745-1755
- Kansara, K., Kumar, A., Karakoti, A.S. (2019) Combination of humic acid and clay reduce the ecotoxic effect of TiO2 NPs: A combined physico-chemical and genetic study using zebrafish embryo. The Science of the total environment. 698:134133
- Kansara, K., Paruthi, A., Misra, S.K., Karakoti, A.S., Kumar, A. (2019) Montmorillonite clay and humic acid modulate the behavior of copper oxide nanoparticles in aqueous environment and induces developmental defects in zebrafish embryo. Environmental pollution (Barking, Essex : 1987). 255:113313
- Pei, W., Xu, L., Huang, S.C., Pettie, K., Idol, J., Rissone, A., Jimenez, E., Sinclair, J.W., Slevin, C., Varshney, G.K., Jones, M., Carrington, B., Bishop, K., Huang, H., Sood, R., Lin, S., Burgess, S.M. (2018) Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues. NPJ Regenerative medicine. 3:11
- Talbot, J.C., Nichols, J.T., Yan, Y.L., Leonard, I.F., BreMiller, R.A., Amacher, S.L., Postlethwait, J.H., Kimmel, C.B. (2016) Pharyngeal morphogenesis requires fras1-itga8- dependent epithelial-mesenchymal interaction. Developmental Biology. 416(1):136-48
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Wang, X., Yu, Q., Wu, Q., Bu, Y., Changm, N.N., Yan, S., Zhou, X.H., Zhu, X., and Xiong, J.W. (2013) Genetic Interaction between pku300 and fbn2b Controls Endocardial Cell Proliferation and Valve Development in Zebrafish. Journal of Cell Science. 126(Pt 6):1381-91
1 - 10 of 19
Show