Gene
rcn3
- ID
- ZDB-GENE-040625-175
- Name
- reticulocalbin 3, EF-hand calcium binding domain
- Symbol
- rcn3 Nomenclature History
- Previous Names
-
- wu:fb37d05
- zgc:86646
- Type
- protein_coding_gene
- Location
- Chr: 3 Mapping Details/Browsers
- Description
- Predicted to enable calcium ion binding activity. Predicted to be active in endoplasmic reticulum. Is expressed in several structures, including epidermis; head mesenchyme; hypochord; mesoderm; and pectoral fin. Orthologous to human RCN3 (reticulocalbin 3).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 8 figures from 3 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:6893843 (24 images)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa15966 | Allele with one point mutation | Unknown | Splice Site | ENU |
1 - 1 of 1
Show
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | EF-Hand 1, calcium-binding site | EF-hand domain | EF-hand domain pair |
---|---|---|---|---|---|
UniProtKB:I3IRX8 | InterPro | 315 | |||
UniProtKB:Q6IQR6 | InterPro | 316 |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(rcn3:EGFP-CAAX) |
|
| 1 | (3) | |
Tg(rcn3:GAL4) |
|
| 1 | (9) | |
Tg(rcn3:GFP-rab32a) |
|
| 1 | (3) | |
Tg(rcn3:LY-mNeonGreen) |
|
| 1 | Sánchez-Iranzo et al., 2022 | |
Tg(rcn3:QF2) |
|
| 1 | Norman et al., 2018 |
1 - 5 of 5
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH73-367P23 | ZFIN Curated Data | |
Contained in | BAC | DKEY-259B21 | ZFIN Curated Data | |
Encodes | EST | fb37d05 | ||
Encodes | EST | IMAGE:6893843 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:86646 | ZFIN Curated Data |
1 - 5 of 5
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001002158 (1) | 1577 nt | ||
Genomic | GenBank:FP236454 (1) | 80694 nt | ||
Polypeptide | UniProtKB:Q6IQR6 (1) | 316 aa |
- Sánchez-Iranzo, H., Halavatyi, A., Diz-Muñoz, A. (2022) Strength of interactions in the Notch gene regulatory network determines patterning and fate in the notochord. eLIFE. 11:
- Jia, S., Wu, X., Wu, Y., Cui, X., Tao, B., Zhu, Z., Hu, W. (2020) Multiple Developmental Defects in sox11a Mutant Zebrafish with Features of Coffin-Siris Syndrome. International journal of biological sciences. 16:3039-3049
- Norman, J., Sorrell, E.L., Hu, Y., Siripurapu, V., Garcia, J., Bagwell, J., Charbonneau, P., Lubkin, S.R., Bagnat, M. (2018) Tissue self-organization underlies morphogenesis of the notochord. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 373(1759):
- Garcia, J., Bagwell, J., Njaine, B., Norman, J., Levic, D.S., Wopat, S., Miller, S.E., Liu, X., Locasale, J.W., Stainier, D.Y.R., Bagnat, M. (2017) Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord. Current biology : CB. 27(13):1982-1989.e3
- Ellis, K., Bagwell, J., and Bagnat, M. (2013) Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis. The Journal of cell biology. 200(5):667-679
- Cheng, W., Guo, L., Zhang, Z., Soo, H.M., Wen, C., Wu, W., and Peng, J. (2006) HNF factors form a network to regulate liver-enriched genes in zebrafish. Developmental Biology. 294(2):482-496
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 7 of 7
Show