Gene
cltca
- ID
- ZDB-GENE-030131-2299
- Name
- clathrin, heavy chain a (Hc)
- Symbol
- cltca Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 10 Mapping Details/Browsers
- Description
- Predicted to enable clathrin light chain binding activity. Predicted to be involved in clathrin coat assembly; mitotic cell cycle; and receptor-mediated endocytosis. Predicted to act upstream of or within vesicle-mediated transport. Predicted to be located in clathrin-coated pit and cytoplasmic vesicle membrane. Predicted to be part of clathrin complex. Predicted to be active in clathrin-coated endocytic vesicle and spindle. Is expressed in axial vasculature; blood; intermediate cell mass of mesoderm; notochord; and ventral mesoderm. Human ortholog(s) of this gene implicated in autosomal dominant intellectual developmental disorder 56. Orthologous to human CLTC (clathrin heavy chain).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 5 figures from Thisse et al., 2001
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- cb1033 (7 images)
Wild Type Expression Summary
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
ct116aGt | Transgenic insertion | Unknown | Unknown | DNA | |
hi2462Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa14787 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa16707 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa21756 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa21757 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa31785 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa34925 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa41680 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 9 of 9
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
autosomal dominant intellectual developmental disorder 56 | Alliance | Intellectual developmental disorder, autosomal dominant 56 | 617854 |
1 - 1 of 1
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Domain | IPR015348 | Clathrin, heavy chain, linker, core motif |
Family | IPR016341 | Clathrin, heavy chain |
Homologous_superfamily | IPR011990 | Tetratricopeptide-like helical domain superfamily |
Homologous_superfamily | IPR016024 | Armadillo-type fold |
Homologous_superfamily | IPR016025 | Clathrin heavy chain, N-terminal |
1 - 5 of 8 Show all
Domain Details Per Protein
Protein | Additional Resources | Length | Armadillo-type fold | Clathrin, heavy chain | Clathrin, heavy chain, linker, core motif | Clathrin heavy chain, N-terminal | Clathrin, heavy chain, propeller repeat | Clathrin heavy-chain repeat | Clathrin, heavy chain/VPS, 7-fold repeat | Tetratricopeptide-like helical domain superfamily |
---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:B3DK43 | InterPro | 1680 | ||||||||
UniProtKB:A0A286YAZ4 | InterPro | 1684 | ||||||||
UniProtKB:Q6DRI2 | InterPro | 1680 | ||||||||
UniProtKB:A0A8M2BJY0 | InterPro | 1681 | ||||||||
UniProtKB:A0A8M3AWS2 | InterPro | 1685 |
1 - 5 of 6 Show all
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-222E20 | ZFIN Curated Data | |
Encodes | EST | cb1033 | Thisse et al., 2001 | |
Encodes | EST | fc03e11 | ||
Encodes | EST | fc49a11 | ZFIN Curated Data | |
Encodes | EST | fd07f02 | ||
Encodes | cDNA | MGC:194792 | ZFIN Curated Data |
1 - 6 of 6
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001005391 (1) | 6517 nt | ||
Genomic | GenBank:CR392341 (2) | 208667 nt | ||
Polypeptide | UniProtKB:A0A8M3AWS2 (1) | 1685 aa |
- Chiang, H.J., Koo, D.E.S., Kitano, M., Burkitt, S., Unruh, J.R., Zavaleta, C., Trinh, L.A., Fraser, S.E., Cutrale, F. (2023) HyU: Hybrid Unmixing for longitudinal in vivo imaging of low signal-to-noise fluorescence. Nature Methods. 20(2):248-258
- Merdrignac, C., Clément, A.E., Montfort, J., Murat, F., Bobe, J. (2022) auts2 Features and Expression Are Highly Conserved during Evolution Despite Different Evolutionary Fates Following Whole Genome Duplication. Cells. 11(17)
- Dong, X., Liao, Z., Gritsch, D., Hadzhiev, Y., Bai, Y., Locascio, J.J., Guennewig, B., Liu, G., Blauwendraat, C., Wang, T., Adler, C.H., Hedreen, J.C., Faull, R.L.M., Frosch, M.P., Nelson, P.T., Rizzu, P., Cooper, A.A., Heutink, P., Beach, T.G., Mattick, J.S., Müller, F., Scherzer, C.R. (2018) Enhancers active in dopamine neurons are a primary link between genetic variation and neuropsychiatric disease. Nature Neuroscience. 21(10):1482-1492
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Ellis, K., Bagwell, J., and Bagnat, M. (2013) Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis. The Journal of cell biology. 200(5):667-679
- Kim, J.D., Kang, H., Larrivée, B., Lee, M.Y., Mettlen, M., Schmid, S.L., Roman, B.L., Qyang, Y., Eichmann, A., and Jin, S.W. (2012) Context-dependent proangiogenic function of bone morphogenetic protein signaling is mediated by disabled homolog 2. Developmental Cell. 23(2):441-448
- Trinh, A., Hochgreb, T., Graham, M., Wu, D., Ruf-Zamojski, F., Jayasena, C.S., Saxena, A., Hawk, R., Gonzalez-Serricchio, A., Dixson, A., Chow, E., Gonzales, C., Leung, H.Y., Solomon, I., Bronner-Fraser, M., Megason, S.G., and Fraser, S.E. (2011) A versatile gene trap to visualize and interrogate the function of the vertebrate proteome. Genes & Development. 25(21):2306-20
- Mishima, Y., Abreu-Goodger, C., Staton, A.A., Stahlhut, C., Shou, C., Cheng, C., Gerstein, M., Enright, A.J., and Giraldez, A.J. (2009) Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes & Development. 23(5):619-632
- Woods, I.G., Wilson, C., Friedlander, B., Chang, P., Reyes, D.K., Nix, R., Kelly, P.D., Chu, F., Postlethwait, J.H., and Talbot, W.S. (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome research. 15(9):1307-1314
- Amsterdam, A., Nissen, R.M., Sun, Z., Swindell, E., Farrington, S., and Hopkins, N. (2004) Identification of 315 genes essential for early zebrafish development. Proceedings of the National Academy of Sciences of the United States of America. 101(35):12792-12797
1 - 10 of 11
Show