Gene
wif1
- ID
- ZDB-GENE-990712-17
- Name
- wnt inhibitory factor 1
- Symbol
- wif1 Nomenclature History
- Previous Names
-
- zgc:110507 (1)
- Type
- protein_coding_gene
- Location
- Chr: 4 Mapping Details/Browsers
- Description
- Predicted to enable signaling receptor binding activity. Acts upstream of or within habenula development; negative regulation of canonical Wnt signaling pathway; and swim bladder development. Predicted to be active in cell surface and extracellular region. Is expressed in several structures, including anterior swim bladder bud; nervous system; paraxial mesoderm; pharyngeal arch; and pleuroperitoneal region. Human ortholog(s) of this gene implicated in breast cancer; renal cell carcinoma; and urinary bladder cancer. Orthologous to human WIF1 (WNT inhibitory factor 1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 19 figures from 12 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- eu316 (19 images)
Wild Type Expression Summary
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la028970Tg | Transgenic insertion | Unknown | Unknown | DNA |
1 - 1 of 1
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-wif1 | (3) | |
CRISPR2-wif1 | (2) | |
CRISPR3-wif1 | (2) | |
MO1-wif1 | N/A | (2) |
MO2-wif1 | N/A | (2) |
1 - 5 of 5
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Developmental Signaling Modulators | EGF-like, conserved site | EGF-like domain | WIF domain | WIF domain superfamily | Wnt inhibitory factor (WIF)-1 |
---|---|---|---|---|---|---|---|---|
UniProtKB:Q9W6F9 | InterPro | 378 | ||||||
UniProtKB:A0AB32TRY8 | InterPro | 346 |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-6A5 | ZFIN Curated Data | |
Encodes | EST | eu316 | Thisse et al., 2005 | |
Encodes | cDNA | MGC:110507 | ZFIN Curated Data | |
Encodes | cDNA | MGC:192912 | ZFIN Curated Data |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_131229 (1) | 1900 nt | ||
Genomic | GenBank:BX119963 (1) | 229125 nt | ||
Polypeptide | UniProtKB:Q9W6F9 (1) | 378 aa |
- Sebo, D.J., Ali, I., Fetsko, A.R., Trimbach, A.A., Taylor, M.R. (2025) Activation of Wnt/β-catenin in neural progenitor cells regulates blood-brain barrier development and promotes neuroinflammation. Scientific Reports. 15:34963496
- Emmerich, K., Walker, S.L., Wang, G., White, D.T., Ceisel, A., Wang, F., Teng, Y., Chunawala, Z., Graziano, G., Nimmagadda, S., Saxena, M.T., Qian, J., Mumm, J.S. (2023) Transcriptomic comparison of two selective retinal cell ablation paradigms in zebrafish reveals shared and cell-specific regenerative responses. PLoS Genetics. 19:e1010905e1010905
- Rawson, A., Saxena, V., Gao, H., Hooks, J., Xuei, X., McGuire, P., Hato, T., Hains, D.S., Anderson, R.M., Schwaderer, A.L. (2022) A Pilot Single Cell Analysis of the Zebrafish Embryo Cellular Responses to Uropathogenic Escherichia coli Infection. Pathogens & immunity. 7:1-18
- Singh, S.P., Chawla, P., Hnatiuk, A., Kamel, M., Silva, L.D., Spanjaard, B., Eski, S.E., Janjuha, S., Olivares-Chauvet, P., Kayisoglu, O., Rost, F., Bläsche, J., Kränkel, A., Petzold, A., Kurth, T., Reinhardt, S., Junker, J.P., Ninov, N. (2022) A single-cell atlas of de novo β-cell regeneration reveals the contribution of hybrid β/δ-cells to diabetes recovery in zebrafish. Development (Cambridge, England). 149(2)
- Fontenas, L., Kucenas, S. (2021) Spinal cord precursors utilize neural crest cell mechanisms to generate hybrid peripheral myelinating glia. eLIFE. 10:
- Guglielmi, L., Bühler, A., Moro, E., Argenton, F., Poggi, L., Carl, M. (2020) Temporal control of Wnt signaling is required for habenular neuron diversity and brain asymmetry. Development (Cambridge, England). 147(6):
- Ye, Z., Kimelman, D. (2020) hox13 genes are required for mesoderm formation and axis elongation during early zebrafish development. Development (Cambridge, England). 147(22):
- Fontenas, L., Welsh, T.G., Piller, M., Coughenour, P., Gandhi, A.V., Prober, D.A., Kucenas, S. (2019) The Neuromodulator Adenosine Regulates Oligodendrocyte Migration at Motor Exit Point Transition Zones. Cell Reports. 27:115-128.e5
- Cai, C., Sang, C., Du, J., Jia, H., Tu, J., Wan, Q., Bao, B., Xie, S., Huang, Y., Li, A., Li, J., Yang, K., Wang, S., Lu, Q. (2018) Knockout of tnni1b in zebrafish causes defects in atrioventricular valve development via the inhibition of the myocardial wnt signaling pathway. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 33(1):696-710
- Wu, X., Shen, W., Zhang, B., Meng, A. (2018) The genetic program of oocytes can be modified in vivo in the zebrafish ovary. Journal of molecular cell biology. 10(6):479-493
1 - 10 of 31
Show