Gene
rrm1
- ID
- ZDB-GENE-990415-247
- Name
- ribonucleotide reductase M1 polypeptide
- Symbol
- rrm1 Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 21 Mapping Details/Browsers
- Description
- Predicted to enable ATP binding activity and ribonucleoside-diphosphate reductase activity, thioredoxin disulfide as acceptor. Predicted to be involved in deoxyribonucleotide biosynthetic process. Predicted to be located in cytoplasm. Predicted to be part of ribonucleoside-diphosphate reductase complex. Is expressed in several structures, including immature eye; nervous system; neural tube; presumptive telencephalon; and tail bud. Human ortholog(s) of this gene implicated in chronic progressive external ophthalmoplegia. Orthologous to human RRM1 (ribonucleotide reductase catalytic subunit M1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 17 figures from Thisse et al., 2001
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- cb396 (13 images)
- cb548 (24 images)
- cb838 (10 images)
Wild Type Expression Summary
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
hi318Tg | Transgenic insertion | Intron 1 | Unknown | DNA | |
hi2729aTg | Transgenic insertion | Intron 1 | Unknown | DNA | |
la014057Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa25163 | Allele with one point mutation | Unknown | Splice Site | ENU |
1 - 4 of 4
Show
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 6 | 620647 |
1 - 1 of 1
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Domain | IPR000788 | Ribonucleotide reductase large subunit, C-terminal |
Domain | IPR005144 | ATP-cone domain |
Domain | IPR013346 | Ribonucleotide reductase, class I, alpha subunit, C-terminal |
Domain | IPR013509 | Ribonucleotide reductase large subunit, N-terminal |
Family | IPR039718 | Ribonucleoside-diphosphate reductase large subunit |
1 - 5 of 6 Show all
Domain Details Per Protein
Protein | Additional Resources | Length | ATP-cone domain | Ribonucleoside-diphosphate reductase large subunit | Ribonucleotide reductase, class I, alpha subunit, C-terminal | Ribonucleotide reductase large subunit, C-terminal | Ribonucleotide reductase large subunit, N-terminal | Ribonucleotide reductase R1 subunit, N-terminal |
---|---|---|---|---|---|---|---|---|
UniProtKB:P79732 | InterPro | 794 | ||||||
UniProtKB:F1R2K9 | InterPro | 794 |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-22F5 | ZFIN Curated Data | |
Encodes | EST | cb396 | Thisse et al., 2001 | |
Encodes | EST | cb548 | Thisse et al., 2001 | |
Encodes | EST | cb838 | Thisse et al., 2001 | |
Encodes | EST | fb39b07 | ||
Encodes | EST | fi14b02 | ||
Encodes | EST | fk95f07 | ||
Encodes | STS | chunp6866 | ||
Encodes | cDNA | MGC:55270 | ZFIN Curated Data | |
Has Artifact | EST | fb68d07 |
1 - 10 of 10
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_131455 (1) | 2783 nt | ||
Genomic | GenBank:BX511168 (1) | 245435 nt | ||
Polypeptide | UniProtKB:F1R2K9 (1) | 794 aa |
- Kuil, L.E., Oosterhof, N., Ferrero, G., Mikulášová, T., Hason, M., Dekker, J., Rovira, M., van der Linde, H.C., van Strien, P.M., de Pater, E., Schaaf, G., Bindels, E.M., Wittamer, V., van Ham, T.J. (2020) Zebrafish macrophage developmental arrest underlies depletion of microglia and reveals Csf1r-independent metaphocytes. eLIFE. 9:
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Danilova, N., Bibikova, E., Covey, T.M., Nathanson, D., Dimitrova, E., Konto, Y., Lindgren, A., Glader, B., Radu, C.G., Sakamoto, K.M., Lin, S. (2014) The role of DNA damage response in zebrafish and cellular models of Diamond Blackfan Anemia. Disease models & mechanisms. 7(7):895-905
- Mans, D.A., Vermaat, J.S., Weijts, B.G., van Rooijen, E., van Reeuwijk, J., Boldt, K., Daenen, L.G., van der Groep, P., Rowland, B.D., Jans, J.J., Roepman, R., Voest, E.E., van Diest, P.J., Verhaar, M.C., de Bruin, A., and Giles, R.H. (2013) Regulation of E2F1 by the von Hippel-Lindau tumour suppressor protein predicts survival in renal cell cancer patients. The Journal of pathology. 231(1):117-29
- Recher, G., Jouralet, J., Brombin, A., Heuzé, A., Mugniery, E., Hermel, J.M., Desnoulez, S., Savy, T., Herbomel, P., Bourrat, F., Peyriéras, N., Jamen, F., and Joly, J.S. (2013) Zebrafish midbrain slow-amplifying progenitors exhibit high levels of transcripts for nucleotide and ribosome biogenesis. Development (Cambridge, England). 140(24):4860-9
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Willaert, A., Khatri, S., Callewaert, B.L., Coucke, P.J., Crosby, S.D., Lee, J.G., Davis, E.C., Shiva, S., Tsang, M., De Paepe, A., and Urban, Z. (2012) GLUT10 is required for the development of the cardiovascular system and the notochord and connects mitochondrial function to TGFβ signaling. Human molecular genetics. 21(6):1248-1259
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
- Woods, I.G., Wilson, C., Friedlander, B., Chang, P., Reyes, D.K., Nix, R., Kelly, P.D., Chu, F., Postlethwait, J.H., and Talbot, W.S. (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome research. 15(9):1307-1314
- Amsterdam, A., Nissen, R.M., Sun, Z., Swindell, E., Farrington, S., and Hopkins, N. (2004) Identification of 315 genes essential for early zebrafish development. Proceedings of the National Academy of Sciences of the United States of America. 101(35):12792-12797
1 - 10 of 15
Show