Gene
pou4f3
- ID
- ZDB-GENE-990415-24
- Name
- POU class 4 homeobox 3
- Symbol
- pou4f3 Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 9 Mapping Details/Browsers
- Description
- Predicted to enable DNA-binding transcription factor activity, RNA polymerase II-specific and RNA polymerase II cis-regulatory region sequence-specific DNA binding activity. Acts upstream of or within brain development. Predicted to be located in cytoplasm and nucleus. Is expressed in auditory receptor cell; neuromast hair cell; and otic vesicle. Human ortholog(s) of this gene implicated in autosomal dominant nonsyndromic deafness 15. Orthologous to human POU4F3 (POU class 4 homeobox 3).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 7 figures from 6 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
No data available
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-pou4f3 | (5) | |
CRISPR2-pou4f3 | (2) | |
CRISPR3-pou4f3 | Lin et al., 2025 |
1 - 3 of 3
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
autosomal dominant nonsyndromic deafness 15 | Alliance | Deafness, autosomal dominant 15/52 | 602459 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Homedomain-like superfamily | Homeobox, conserved site | Homeodomain | Lambda repressor-like, DNA-binding domain superfamily | POU domain | POU domain transcription factor | POU-specific domain |
---|---|---|---|---|---|---|---|---|---|
UniProtKB:Q90435 | InterPro | 331 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
pou4f3-201
(1)
|
Ensembl | 996 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(pou4f3:GAP-GFP) |
|
| 2 | (205) | |
Tg(pou4f3:ctbp2l-mKOFP) |
|
| 1 | (4) | |
Tg(pou4f3:GAL4) |
|
| 1 | (12) | |
Tg(pou4f3:GAL4,UAS:GAP-GFP) |
|
| 2 | (25) | |
Tg(pou4f3:GAL4-VP16) |
|
| 1 | Du et al., 2018 | |
Tg(pou4f3:GAL80,myl7:EGFP) |
|
| 1 | (2) |
1 - 6 of 6
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-149G3 | ZFIN Curated Data |
1 - 1 of 1
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_131278 (1) | 996 nt | ||
Genomic | GenBank:CU468941 (2) | 64865 nt | ||
Polypeptide | UniProtKB:Q90435 (1) | 331 aa |
- Lin, S.J., Huang, K., Petree, C., Qin, W., Varshney, P., Varshney, G.K. (2025) Optimizing gRNA selection for high-penetrance F0 CRISPR screening for interrogating disease gene function. Nucleic acids research. 53:
- Banerjee, B., Koner, D., Karasik, D., Saha, N. (2020) Genome-wide identification of novel long non-coding RNAs and their possible roles in hypoxic zebrafish brain. Genomics. 113(1 Pt 1):29-43
- Carpaneto Freixas, A.E., Moglie, M.J., Castagnola, T., Salatino, L., Domene, S., Marcovich, I., Gallino, S., Wedemeyer, C., Goutman, J.D., Plazas, P.V., Elgoyhen, A.B. (2020) Unravelling the molecular players at the cholinergic efferent synapse of the zebrafish lateral line. The Journal of neuroscience : the official journal of the Society for Neuroscience. 41(1):47-60
- Kozak, E.L., Palit, S., Miranda-Rodríguez, J.R., Janjic, A., Böttcher, A., Lickert, H., Enard, W., Theis, F.J., López-Schier, H. (2020) Epithelial Planar Bipolarity Emerges from Notch-Mediated Asymmetric Inhibition of Emx2. Current biology : CB. 30(6):1142-1151.e6
- Yu, R., Wang, P., Chen, X.W. (2020) The role of gfi1.2 in the development of zebrafish inner ear. Hearing Research. 396:108055
- Lush, M.E., Diaz, D.C., Koenecke, N., Baek, S., Boldt, H., St Peter, M.K., Gaitan-Escudero, T., Romero-Carvajal, A., Busch-Nentwich, E.M., Perera, A.G., Hall, K.E., Peak, A., Haug, J.S., Piotrowski, T. (2019) scRNA-Seq reveals distinct stem cell populations that drive hair cell regeneration after loss of Fgf and Notch signaling. eLIFE. 8:
- Martik, M.L., Gandhi, S., Uy, B.R., Gillis, J.A., Green, S.A., Simoes-Costa, M., Bronner, M.E. (2019) Evolution of the new head by gradual acquisition of neural crest regulatory circuits. Nature. 574(7780):675-678
- Du, X.F., Xu, B., Zhang, Y., Chen, M.J., Du, J.L. (2018) A transgenic zebrafish model for in vivo long-term imaging of retinotectal synaptogenesis. Scientific Reports. 8:14077
- Varshney, G.K., Carrington, B., Pei, W., Bishop, K., Chen, Z., Fan, C., Xu, L., Jones, M., LaFave, M.C., Ledin, J., Sood, R., Burgess, S.M. (2016) A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish. Nature Protocols. 11:2357-2375
- Carrington, B., Varshney, G.K., Burgess, S.M., Sood, R. (2015) CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity. Nucleic acids research. 43(22):e157
1 - 10 of 29
Show