Gene
hoxc11a
- ID
- ZDB-GENE-990415-111
- Name
- homeobox C11a
- Symbol
- hoxc11a Nomenclature History
- Previous Names
-
- hoxc11
- id:ibd3176
- zgc:110834
- Type
- protein_coding_gene
- Location
- Chr: 23 Mapping Details/Browsers
- Description
- Predicted to enable DNA-binding transcription factor activity, RNA polymerase II-specific and RNA polymerase II cis-regulatory region sequence-specific DNA binding activity. Predicted to be involved in embryonic skeletal joint morphogenesis and regulation of transcription by RNA polymerase II. Predicted to act upstream of or within regulation of DNA-templated transcription. Predicted to be located in nucleoplasm. Predicted to be active in nucleus. Is expressed in caudal fin; neural tube; oocyte; tail bud; and ventral mesenchyme. Orthologous to human HOXC11 (homeobox C11).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 13 figures from 5 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:7153291 (11 images)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-hoxc11a | Adachi et al., 2024 | |
MO1-hoxc11a | N/A | Sundaramoorthi et al., 2023 |
1 - 2 of 2
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Domain of unknown function DUF3528, homeobox protein, eukaryotic | Homedomain-like superfamily | Homeobox, conserved site | Homeodomain | Homeodomain, metazoa |
---|---|---|---|---|---|---|---|
UniProtKB:Q58EL0 | InterPro | 306 | |||||
UniProtKB:B2GQI4 | InterPro | 306 |
1 - 2 of 2
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
hoxc11a-201
(1)
|
Ensembl | 1,512 nt | ||
mRNA |
hoxc11a-202
(1)
|
Ensembl | 1,955 nt |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-81P22 | ZFIN Curated Data | |
Encodes | EST | ibd3176 | Kudoh et al., 2001 | |
Encodes | EST | IMAGE:7153291 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:110834 | ZFIN Curated Data | |
Encodes | cDNA | MGC:191923 | ZFIN Curated Data |
1 - 5 of 5
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_131165 (1) | 1540 nt | ||
Genomic | GenBank:BX005254 (1) | 160012 nt | ||
Polypeptide | UniProtKB:B2GQI4 (1) | 306 aa |
- Adachi, U., Koita, R., Seto, A., Maeno, A., Ishizu, A., Oikawa, S., Tani, T., Ishizaka, M., Yamada, K., Satoh, K., Nakazawa, H., Furudate, H., Kawakami, K., Iwanami, N., Matsuda, M., Kawamura, A. (2024) Teleost Hox code defines regional identities competent for the formation of dorsal and anal fins. Proceedings of the National Academy of Sciences of the United States of America. 121:e2403809121e2403809121
- Sundaramoorthi, H., Fallatah, W., Mary, J., Jagadeeswaran, P. (2023) Discovery of seven hox genes in zebrafish thrombopoiesis. Blood cells, molecules & diseases. 104:102796102796
- Banu, S., Gaur, N., Nair, S., Ravikrishnan, T., Khan, S., Mani, S., Bharathi, S., Mandal, K., Kuram, N.A., Vuppaladadium, S., Ravi, R., Murthy, C.L.N., Quoseena, M., Babu, N.S., Idris, M.M. (2022) Transcriptomic and proteomic analysis of epimorphic regeneration in zebrafish caudal fin tissue. Genomics. 114(2):110300
- Xue, S., Ly, T.T.N., Vijayakar, R.S., Chen, J., Ng, J., Mathuru, A.S., Magdinier, F., Reversade, B. (2022) HOX epimutations driven by maternal SMCHD1/LRIF1 haploinsufficiency trigger homeotic transformations in genetically wildtype offspring. Nature communications. 13:3583
- Yamada, K., Maeno, A., Araki, S., Kikuchi, M., Suzuki, M., Ishizaka, M., Satoh, K., Akama, K., Kawabe, Y., Suzuki, K., Kobayashi, D., Hamano, N., Kawamura, A. (2021) An atlas of seven zebrafish hox cluster mutants provides insights into sub/neofunctionalization of vertebrate Hox clusters. Development (Cambridge, England). 148(11):
- Malmstrøm, M., Britz, R., Matschiner, M., Tørresen, O.K., Hadiaty, R.K., Yaakob, N., Tan, H.H., Jakobsen, K.S., Salzburger, W., Rüber, L. (2018) The Most Developmentally Truncated Fishes Show Extensive Hox Gene Loss and Miniaturized Genomes. Genome biology and evolution. 10:1088-1103
- Jimenez, L., Wang, J., Morrison, M.A., Whatcott, C., Soh, K.K., Warner, S., Bearss, D., Jette, C.A., Stewart, R.A. (2016) Phenotypic chemical screening using zebrafish neural crest reporters identifies retinoid acid as an inhibitor of epithelial morphogenesis. Disease models & mechanisms. 9(4):389-400
- Mehta, T.K., Ravi, V., Yamasaki, S., Lee, A.P., Lian, M.M., Tay, B.H., Tohari, S., Yanai, S., Tay, A., Brenner, S., and Venkatesh, B. (2013) Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). Proceedings of the National Academy of Sciences of the United States of America. 110(40):16044-16049
- Ng, Y.K., Wu, W., and Zhang, L. (2009) Positive correlation between gene coexpression and positional clustering in the zebrafish genome. BMC Genomics. 10:42
- Lan, F., Bayliss, P.E., Rinn, J.L., Whetstine, J.R., Wang, J.K., Chen, S., Iwase, S., Alpatov, R., Issaeva, I., Canaani, E., Roberts, T.M., Chang, H.Y., and Shi, Y. (2007) A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 449(7163):689-694
1 - 10 of 18
Show