Gene
chrm4a
- ID
- ZDB-GENE-090410-6
- Name
- cholinergic receptor, muscarinic 4a
- Symbol
- chrm4a Nomenclature History
- Previous Names
-
- DrM4A (1)
- wu:fk59h03
- Type
- protein_coding_gene
- Location
- Chr: 7 Mapping Details/Browsers
- Description
- Predicted to enable G protein-coupled acetylcholine receptor activity. Predicted to be involved in G protein-coupled receptor signaling pathway, coupled to cyclic nucleotide second messenger; adenylate cyclase-inhibiting G protein-coupled acetylcholine receptor signaling pathway; and chemical synaptic transmission. Predicted to act upstream of or within G protein-coupled receptor signaling pathway and regulation of locomotion. Predicted to be located in postsynaptic membrane. Predicted to be active in dendrite; plasma membrane; and synapse. Orthologous to human CHRM4 (cholinergic receptor muscarinic 4).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- No data available
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- 2 figures from Thyme et al., 2019
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
a248 | Allele with one delins | Unknown | Unknown | CRISPR | |
la016111Tg | Transgenic insertion | Unknown | Unknown | DNA | |
nv1152 | Allele with one deletion | Exon 2 | Unknown | CRISPR | |
sa1366 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa21026 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 5 of 5
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-chrm4a | Thyme et al., 2019 | |
CRISPR2-chrm4a | Thyme et al., 2019 | |
CRISPR3-chrm4a | Thyme et al., 2019 | |
CRISPR4-chrm4a | Thyme et al., 2019 |
1 - 4 of 4
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | GPCR, rhodopsin-like, 7TM | G protein-coupled receptor, rhodopsin-like | Muscarinic acetylcholine receptor family | Muscarinic acetylcholine receptor M4 |
---|---|---|---|---|---|---|
UniProtKB:E7F3U8 | InterPro | 513 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
chrm4a-201
(1)
|
Ensembl | 2,864 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-210E9 | ||
Encodes | EST | fk59h03 |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:XM_001922407 (1) | 6594 nt | ||
Genomic | GenBank:CR356225 (1) | 201825 nt | ||
Polypeptide | UniProtKB:E7F3U8 (1) | 513 aa |
- Siregar, P., Audira, G., Feng, L.Y., Lee, J.H., Santoso, F., Yu, W.H., Lai, Y.H., Li, J.H., Lin, Y.T., Chen, J.R., Hsiao, C.D. (2021) Pharmaceutical Assessment Suggests Locomotion Hyperactivity in Zebrafish Triggered by Arecoline Might Be Associated with Multiple Muscarinic Acetylcholine Receptors Activation. toxins. 13(4):
- Tang, W., Davidson, J.D., Zhang, G., Conen, K.E., Fang, J., Serluca, F., Li, J., Xiong, X., Coble, M., Tsai, T., Molind, G., Fawcett, C.H., Sanchez, E., Zhu, P., Couzin, I.D., Fishman, M.C. (2020) Genetic Control of Collective Behavior in Zebrafish. iScience. 23:100942
- Thyme, S.B., Pieper, L.M., Li, E.H., Pandey, S., Wang, Y., Morris, N.S., Sha, C., Choi, J.W., Herrera, K.J., Soucy, E.R., Zimmerman, S., Randlett, O., Greenwood, J., McCarroll, S.A., Schier, A.F. (2019) Phenotypic Landscape of Schizophrenia-Associated Genes Defines Candidates and Their Shared Functions. Cell. 177(2):478-491.e20
- Pedersen, J.E., Bergqvist, C.A., Larhammar, D. (2018) Evolution of the Muscarinic Acetylcholine Receptors in Vertebrates. eNeuro. 5(5):
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Nuckels, R.J., Forstner, M.R., Capalbo-Pitts, E.L., and García, D.M. (2011) Developmental expression of muscarinic receptors in the eyes of zebrafish. Brain research. 1405:85-94
- Seo, J.S., Kim, M.S., Park, E.M., Ahn, S.J., Kim, N.Y., Jung, S.H., Kim, J.W., Lee, H.H., and Chung, J.K. (2009) Cloning and characterization of muscarinic receptor genes from the nile tilapia (Oreochromis niloticus). Molecules and cells. 27(3):383-390
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
1 - 10 of 10
Show