Gene
tfam
- ID
- ZDB-GENE-061013-552
- Name
- transcription factor A, mitochondrial
- Symbol
- tfam Nomenclature History
- Previous Names
-
- zgc:153358
- Type
- protein_coding_gene
- Location
- Chr: 12 Mapping Details/Browsers
- Description
- Predicted to enable mitochondrial transcription factor activity. Acts upstream of or within regulation of female gonad development and regulation of mitochondrial DNA metabolic process. Predicted to be located in intracellular organelle lumen; mitochondrion; and nucleus. Predicted to be active in mitochondrial nucleoid. Is expressed in several structures, including digestive system; gonad; muscle; pericardial region; and somite. Human ortholog(s) of this gene implicated in Alzheimer's disease; Huntington's disease; Parkinson's disease; amyotrophic lateral sclerosis; and mitochondrial DNA depletion syndrome 15. Orthologous to human TFAM (transcription factor A, mitochondrial).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 11 figures from 10 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- 6 figures from Ullah et al., 2021
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-tfam | Zebrafish Nomenclature Committee | |
CRISPR2-tfam | Ullah et al., 2021 | |
MO1-tfam | N/A | Otten et al., 2020 |
MO2-tfam | N/A | Ullah et al., 2021 |
1 - 4 of 4
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
mitochondrial DNA depletion syndrome 15 | Alliance | ?Mitochondrial DNA depletion syndrome 15 (hepatocerebral type) | 617156 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | High mobility group box domain | High mobility group box domain superfamily | High Mobility Group Box (HMGB) |
---|---|---|---|---|---|
UniProtKB:Q08BL2 | InterPro | 277 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-79A2 | ZFIN Curated Data | |
Encodes | cDNA | MGC:153358 | ZFIN Curated Data | |
Encodes | cDNA | MGC:192632 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001077389 (1) | 1401 nt | ||
Genomic | GenBank:CU326359 (1) | 101142 nt | ||
Polypeptide | UniProtKB:Q08BL2 (1) | 277 aa |
- Baker, C.E., Marta, A.G., Zimmerman, N.D., Korade, Z., Mathy, N.W., Wilton, D., Simeone, T., Kochvar, A., Kramer, K.L., Stessman, H.A.F., Shibata, A. (2024) CPT2 Deficiency Modeled in Zebrafish: Abnormal Neural Development, Electrical Activity, Behavior, and Schizophrenia-Related Gene Expression. Biomolecules. 14(8):
- Grepper, D., Tabasso, C., Zanou, N., Aguettaz, A.K.F., Castro-Sepulveda, M., Ziegler, D.V., Lagarrigue, S., Arribat, Y., Martinotti, A., Ebrahimi, A., Daraspe, J., Fajas, L., Amati, F. (2024) BCL2L13 at endoplasmic reticulum-mitochondria contact sites regulates calcium homeostasis to maintain skeletal muscle function. iScience. 27:110510110510
- Rani, R., Sri, N.S., Medishetti, R., Chatti, K., Sevilimedu, A. (2024) Loss of FMRP affects ovarian development and behaviour through multiple pathways in a zebrafish model of fragile X syndrome. Human molecular genetics. 33(16):1391-1405
- Wong, H.C., Lang, A.E., Stein, C., Drerup, C.M. (2024) ALS-linked VapB P56S mutation alters neuronal mitochondrial turnover at the synapse. The Journal of neuroscience : the official journal of the Society for Neuroscience. 44(35):
- Darroch, H., Keerthisinghe, P., Sung, Y.J., Rolland, L., Prankerd-Gough, A., Crosier, P.S., Astin, J.W., Hall, C.J. (2023) Infection-experienced HSPCs protect against infections by generating neutrophils with enhanced mitochondrial bactericidal activity. Science advances. 9:eadf9904
- Le Mentec, H., Monniez, E., Legrand, A., Monvoisin, C., Lagadic-Gossmann, D., Podechard, N. (2023) A New In Vivo Zebrafish Bioassay Evaluating Liver Steatosis Identifies DDE as a Steatogenic Endocrine Disruptor, Partly through SCD1 Regulation. International Journal of Molecular Sciences. 24(4):
- Zhang, X., Ivantsova, E., Perez-Rodriguez, V., Cao, F., Souders, C.L., Martyniuk, C.J. (2022) Investigating mitochondria-immune responses in zebrafish, Danio rerio (Hamilton, 1822): A case study with the herbicide dinoseb. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 257:109357
- Zou, Y.Y., Chen, Z.L., Sun, C.C., Yang, D., Zhou, Z.Q., Xiao, Q., Peng, X.Y., Tang, C.F. (2022) A High-Fat Diet Induces Muscle Mitochondrial Dysfunction and Impairs Swimming Capacity in Zebrafish: A New Model of Sarcopenic Obesity. Nutrients. 14(9)
- Chen, Z., Zhou, Z., Peng, X., Sun, C., Yang, D., Li, C., Zhu, R., Zhang, P., Zheng, L., Tang, C. (2021) Cardioprotective responses to aerobic exercise-induced physiological hypertrophy in zebrafish heart. The journal of physiological sciences : JPS. 71:33
- Han, S.L., Qian, Y.C., Limbu, S.M., Wang, J., Chen, L.Q., Zhang, M.L., Du, Z.Y. (2021) Lipolysis and lipophagy play individual and interactive roles in regulating triacylglycerol and cholesterol homeostasis and mitochondrial form in zebrafish. Biochimica et biophysica acta. Molecular and cell biology of lipids. 1866(9):158988
1 - 10 of 35
Show