Gene
kdm4b
- ID
- ZDB-GENE-060503-664
- Name
- lysine (K)-specific demethylase 4B
- Symbol
- kdm4b Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 22 Mapping Details/Browsers
- Description
- Predicted to enable histone H3K9 demethylase activity. Predicted to be involved in chromatin remodeling and regulation of gene expression. Predicted to act upstream of or within chromatin organization. Predicted to be active in chromatin and nucleus. Is expressed in caudal hematopoietic tissue. Human ortholog(s) of this gene implicated in autosomal dominant intellectual developmental disorder 65; breast cancer; colorectal cancer; malignant peripheral nerve sheath tumor; and stomach cancer. Orthologous to human KDM4B (lysine demethylase 4B).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 1 figure from Yu et al., 2018
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la022356Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa10758 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa15777 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa17996 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa44979 | Allele with one point mutation | Unknown | Unknown | ENU |
1 - 5 of 5
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
autosomal dominant intellectual developmental disorder 65 | Alliance | Intellectual developmental disorder, autosomal dominant 65 | 619320 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Extended PHD (ePHD) domain | JmjC domain | JmjN domain | Lysine-specific demethylase 4B, first Tudor domain | Lysine-specific demethylase 4-like, Tudor domain | Tudor domain | Zinc finger, FYVE/PHD-type | Zinc finger, PHD-finger | Zinc finger, PHD-type | Zinc finger, RING/FYVE/PHD-type |
---|---|---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:Q1LUQ0 | InterPro | 1134 | ||||||||||
UniProtKB:A0A8M9P494 | InterPro | 1132 |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-124A3 | ZFIN Curated Data | |
Contained in | Fosmid | CH1073-159L14 | ZFIN Curated Data | |
Encodes | cDNA | MGC:198425 | ZFIN Curated Data | |
Encodes | cDNA | MGC:198427 | ZFIN Curated Data |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001082805 (1) | 5293 nt | ||
Genomic | GenBank:BX927276 (1) | 166844 nt | ||
Polypeptide | UniProtKB:Q1LUQ0 (1) | 1134 aa |
- Shao, T., Ji, J.F., Zheng, J.Y., Li, C., Zhu, L.Y., Fan, D.D., Lin, A.F., Xiang, L.X., Shao, J.Z. (2022) Zbtb46 Controls Dendritic Cell Activation by Reprogramming Epigenetic Regulation of cd80/86 and cd40 Costimulatory Signals in a Zebrafish Model. Journal of immunology (Baltimore, Md. : 1950). 208(12):2686-2701
- Fellous, A., Earley, R.L., Silvestre, F. (2018) The Kdm/Kmt gene families in the self-fertilizing mangrove rivulus fish, Kryptolebias marmoratus, suggest involvement of histone methylation machinery in development and reproduction. Gene. 687:173-187
- Yu, S.H., Zhu, K.Y., Zhang, F., Wang, J., Yuan, H., Chen, Y., Jin, Y., Dong, M., Wang, L., Jia, X.E., Gao, L., Dong, Z.W., Ren, C.G., Chen, L.T., Huang, Q.H., Deng, M., Zon, L.I., Zhou, Y., Zhu, J., Xu, P.F., Liu, T.X. (2018) The histone demethylase Jmjd3 regulates zebrafish myeloid development by promoting spi1 expression. Biochimica et biophysica acta. 1861(2):106-116
- Huang, H.T., Kathrein, K.L., Barton, A., Gitlin, Z., Huang, Y.H., Ward, T.P., Hofmann, O., Dibiase, A., Song, A., Tyekucheva, S., Hide, W., Zhou, Y., and Zon, L.I. (2013) A network of epigenetic regulators guides developmental haematopoiesis in vivo. Nature cell biology. 15(12):1516-1525
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 7 of 7
Show