Gene
serpini1
- ID
- ZDB-GENE-060503-390
- Name
- serpin peptidase inhibitor, clade I (neuroserpin), member 1
- Symbol
- serpini1 Nomenclature History
- Previous Names
-
- si:ch211-167c22.4 (1)
- Type
- protein_coding_gene
- Location
- Chr: 18 Mapping Details/Browsers
- Description
- Predicted to enable serine-type endopeptidase inhibitor activity. Acts upstream of or within regulation of neuron projection development; response to oxidative stress; and thigmotaxis. Predicted to be located in extracellular region. Predicted to be active in extracellular space. Is expressed in hypothalamus; lapillus; midbrain; otolith; and telencephalon. Human ortholog(s) of this gene implicated in familial encephalopathy with neuroserpin inclusion bodies. Orthologous to human SERPINI1 (serpin family I member 1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 5 figures from 4 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
familial encephalopathy with neuroserpin inclusion bodies | Alliance | Encephalopathy, familial, with neuroserpin inclusion bodies | 604218 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Serpin, conserved site | Serpin domain | Serpin family | Serpin superfamily | Serpin superfamily, domain 1 | Serpin superfamily, domain 2 |
---|---|---|---|---|---|---|---|---|
UniProtKB:B3DJI9 | InterPro | 415 |
1 - 1 of 1
- Genome Browsers
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
serpini1-201
(1)
|
Ensembl | 4,689 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
- Lin, S.J., Huang, K., Petree, C., Qin, W., Varshney, P., Varshney, G.K. (2025) Optimizing gRNA selection for high-penetrance F0 CRISPR screening for interrogating disease gene function. Nucleic acids research. 53:
- Han, S., Zhang, D., Dong, Q., Wang, X., Wang, L. (2021) Overexpression of neuroserpin in larval and adult zebrafish shows different behavioral phenotypes. Neuroscience letters. 762:136175
- Han, S., Zhang, D., Dong, Q., Wang, X., Wang, L. (2021) Deficiency in Neuroserpin Exacerbates CoCl2 Induced Hypoxic Injury in the Zebrafish Model by Increased Oxidative Stress. Frontiers in pharmacology. 12:632662
- Han, S., Fei, F., Sun, S., Zhang, D., Dong, Q., Wang, X., Wang, L. (2020) Increased anxiety was found in serpini1 knockout zebrafish larval. Biochemical and Biophysical Research Communications. 534:1013-1019
- Kalka, M., Markiewicz, N., Ptak, M., Sone, E.D., Ożyhar, A., Dobryszycki, P., Wojtas, M. (2019) In vivo and in vitro analysis of starmaker activity in zebrafish otolith biomineralization. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 33(6):6877-6886
- Aoki, M., Segawa, H., Naito, M., and Okamoto, H. (2014) Identification of possible downstream genes required for the extension of peripheral axons in primary sensory neurons. Biochemical and Biophysical Research Communications. 445(2):357-362
- Toro, S., Wegner, J., Muller, M., Westerfield, M., and Varga, Z.M. (2009) Identification of differentially expressed genes in the zebrafish hypothalamic-pituitary axis. Gene expression patterns : GEP. 9(4):200-208
- Kang, Y.J., Stevenson, A.K., Yau, P.M., and Kollmar, R. (2008) Sparc Protein Is Required for Normal Growth of Zebrafish Otoliths. Journal of the Association for Research in Otolaryngology : JARO. 9(4):436-451
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 9 of 9
Show