Gene
pax1b
- ID
- ZDB-GENE-060503-372
- Name
- paired box 1b
- Symbol
- pax1b Nomenclature History
- Previous Names
-
- si:dkeyp-50f5.1
- Type
- protein_coding_gene
- Location
- Chr: 20 Mapping Details/Browsers
- Description
- Predicted to enable DNA-binding transcription factor activity, RNA polymerase II-specific and RNA polymerase II cis-regulatory region sequence-specific DNA binding activity. Acts upstream of or within chordate embryonic development; cranial skeletal system development; and pectoral fin development. Predicted to be located in nucleus. Is expressed in several structures, including axial blood vessel; fin bud; notochord; pharyngeal endoderm; and pharyngeal pouch. Human ortholog(s) of this gene implicated in branchiootorenal syndrome. Orthologous to human PAX1 (paired box 1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 7 figures from 4 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
Phenotype Summary
Mutations
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-pax1b | (2) | |
CRISPR2-pax1b | Okada et al., 2020 | |
MO1-pax1b | N/A | (3) |
MO2-pax1b | N/A | Chen et al., 2014 |
MO3-pax1b | N/A | Liu et al., 2020 |
1 - 5 of 5
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
Otofaciocervical syndrome 2 with T-cell deficiency | 615560 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Homedomain-like superfamily | Paired DNA-binding domain | Paired domain | PAX family | Winged helix-like DNA-binding domain superfamily |
---|---|---|---|---|---|---|---|
UniProtKB:B0S7C8 | InterPro | 340 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEYP-50F5 | ZFIN Curated Data |
1 - 1 of 1
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:XM_695785 (1) | |||
Genomic | GenBank:BX663521 (1) | 179633 nt | ||
Polypeptide | UniProtKB:B0S7C8 (1) | 340 aa |
- Jeon, H., Jin, S., Kim, J., Joo, S., Choe, C.P. (2025) Pax1a-EphrinB2a pathway in the first pharyngeal pouch controls hyomandibular plate formation by promoting chondrocyte formation in zebrafish. Frontiers in cell and developmental biology. 13:14829061482906
- Miao, D., Ren, J., Jia, Y., Jia, Y., Li, Y., Huang, H., Gao, R. (2024) PAX1 represses canonical Wnt signaling pathway and plays dual roles during endoderm differentiation. Cell communication and signaling : CCS. 22:242242
- Carril Pardo, C.A., Massoz, L., Dupont, M.A., Bergemann, D., Bourdouxhe, J., Lavergne, A., Tarifeño-Saldivia, E., Helker, C.S., Stainier, D.Y., Peers, B., Voz, M.M., Manfroid, I. (2022) A δ-cell subpopulation with pro-β cell identity contributes to efficient age-independent recovery in a zebrafish diabetes model. eLIFE. 11:
- Liu, Y.H., Lin, T.C., Hwang, S.L. (2020) Zebrafish Pax1a and Pax1b are required for pharyngeal pouch morphogenesis and ceratobranchial cartilage development. Mechanisms of Development. 161:103598
- Okada, K., Takada, S. (2020) The second pharyngeal pouch is generated by dynamic remodeling of endodermal epithelium in zebrafish. Development (Cambridge, England). 147(24):
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Rauwerda, H., Wackers, P., Pagano, J.F., de Jong, M., Ensink, W., Dekker, R., Nehrdich, U., Spaink, H.P., Jonker, M., Breit, T.M. (2016) Mother-Specific Signature in the Maternal Transcriptome Composition of Mature, Unfertilized Zebrafish Eggs. PLoS One. 11:e0147151
- Chen, X., Huang, H., Wang, H., Guo, F., Du, X., Ma, L., Zhao, L., Pan, Z., Gui, H., Yuan, T., Liu, X., Song, L., Wang, Y., He, J., Lei, H., Gao, R. (2014) Characterization of zebrafish pax1b and pax9 in fin bud development. BioMed Research International. 2014:309385
- Liu, X., Wang, H., Li, G., Huang, H.Z., and Wang, Y.Q. (2013) The function of DrPax1b gene in the embryonic development of zebrafish. Genes & genetic systems. 88(4):261-269
- Wang, Y., and Zhang, S. (2011) Identification and expression of liver-specific genes after LPS challenge in amphioxus: the hepatic cecum as liver-like organ and "pre-hepatic" acute phase response. Functional & integrative genomics. 11(1):111-118
1 - 10 of 10
Show