Gene
tgfbr1a
- ID
- ZDB-GENE-051120-75
- Name
- transforming growth factor, beta receptor 1 a
- Symbol
- tgfbr1a Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 2 Mapping Details/Browsers
- Description
- Predicted to enable SMAD binding activity; activin binding activity; and transmembrane receptor protein serine/threonine kinase activity. Involved in vascular endothelial cell proliferation. Predicted to be located in bicellular tight junction; cell surface; and membrane raft. Predicted to be part of activin receptor complex. Predicted to be active in plasma membrane. Is expressed in brain; endoderm; eye; heart; and pharyngeal arch. Human ortholog(s) of this gene implicated in Loeys-Dietz syndrome 1; Lynch syndrome; carcinoma (multiple); colorectal cancer; and urinary bladder cancer. Orthologous to human TGFBR1 (transforming growth factor beta receptor 1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 8 figures from 8 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- 5 figures from Bensimon-Brito et al., 2021
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
bns329 | Allele with one delins | Unknown | Unknown | CRISPR | |
la010336Tg | Transgenic insertion | Unknown | Unknown | DNA |
1 - 2 of 2
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
Loeys-Dietz syndrome 1 | Alliance | Loeys-Dietz syndrome 1 | 609192 |
{Multiple self-healing squamous epithelioma, susceptibility to} | 132800 |
1 - 2 of 2
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Activin types I and II receptor domain | GS domain | Protein kinase, ATP binding site | Protein kinase domain | Protein kinase-like domain superfamily | Serine/threonine-protein kinase, active site | Ser/Thr protein kinase, TGFB receptor | Snake toxin-like superfamily |
---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:B0EXP6 | InterPro | 500 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
tgfbr1a-201
(1)
|
Ensembl | 1,703 nt |
1 - 1 of 1
Interactions and Pathways
Plasmids
No data available
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(hsp70l:dntgfbr1a-2A-Hsa.HISTH2BJ-GFP) |
| 1 | Bensimon-Brito et al., 2019 |
1 - 1 of 1
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-24C2 | ZFIN Curated Data | |
Contained in | BAC | DKEYP-93C5 | ZFIN Curated Data | |
Encodes | cDNA | MGC:123263 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001037683 (1) | 2147 nt | ||
Genomic | GenBank:BX649335 (1) | 220851 nt | ||
Polypeptide | UniProtKB:B0EXP6 (1) | 500 aa |
- Ye, J., Lu, L., Rui, X.H., Ren, M.D., Tu, F., Shang, Z.B., Liu, J. (2025) Zebrafish as a model for investigating Klebsiella pneumoniae-driven lung injury and therapeutic targets. Experimental Lung Research. 51:112211-22
- Cao, Z., Liu, G., Zhang, H., Wang, M., Xu, Y. (2022) Nox4 promotes osteoblast differentiation through TGF-beta signal pathway. Free radical biology & medicine. 193(Pt 2):595-609
- Hsu, A.Y., Wang, T., Syahirah, R., Liu, S., Li, K., Zhang, W., Wang, J., Cao, Z., Tian, S., Matosevic, S., Staiger, C.J., Wan, J., Deng, Q. (2022) Rora Regulates Neutrophil Migration and Activation in Zebrafish. Frontiers in immunology. 13:756034
- Bensimon-Brito, A., Boezio, G.L.M., Cardeira-da-Silva, J., Wietelmann, A., Ramkumar, S., Lundegaard, P.R., Helker, C.S.M., Ramadass, R., Piesker, J., Nauerth, A., Mueller, C., Stainier, D.Y.R. (2021) Integration of multiple imaging platforms to uncover cardiovascular defects in adult zebrafish. Cardiovascular research. 118(12):2665-2687
- Peng, Y., Wang, W., Fang, Y., Hu, H., Chang, N., Pang, M., Hu, Y.F., Li, X., Long, H., Xiong, J.W., Zhang, R. (2021) Inhibition of TGF-β/Smad3 Signaling Disrupts Cardiomyocyte Cell Cycle Progression and Epithelial-Mesenchymal Transition-Like Response During Ventricle Regeneration. Frontiers in cell and developmental biology. 9:632372
- Boezio, G.L., Bensimon-Brito, A., Piesker, J., Guenther, S., Helker, C.S., Stainier, D.Y. (2020) Endothelial TGF-β signaling instructs smooth muscle cell development in the cardiac outflow tract. eLIFE. 9:
- Li, Y.Q., Chen, Y., Fang, J.Y., Jiang, S.Q., Li, P., Li, F. (2020) Integrated network pharmacology and zebrafish model to investigate dual-effects components of Cistanche tubulosa for treating both Osteoporosis and Alzheimer's Disease. Journal of ethnopharmacology. 254:112764
- Yang, R., Zhan, M., Guo, M., Yuan, H., Wang, Y., Zhang, Y., Zhang, W., Chen, S., de The, H., Chen, Z., Zhou, J., Zhu, J. (2020) Yolk sac-derived Pdcd11-positive cells modulate zebrafish microglia differentiation through the NF-κB-Tgfβ1 pathway. Cell death and differentiation. 28(1):170-183
- Bensimon-Brito, A., Ramkumar, S., Boezio, G.L.M., Guenther, S., Kuenne, C., Helker, C.S.M., Sánchez-Iranzo, H., Iloska, D., Piesker, J., Pullamsetti, S., Mercader, N., Beis, D., Stainier, D.Y.R. (2019) TGF-β Signaling Promotes Tissue Formation during Cardiac Valve Regeneration in Adult Zebrafish. Developmental Cell. 52(1):9-20.e7
- Lu, T., Zhang, T., Wang, C., Yang, N., Pan, Y.H., Dang, S., Zhang, W. (2019) Adamts18 deficiency in zebrafish embryo causes defective trunk angiogenesis and caudal vein plexus formation. Biochemical and Biophysical Research Communications. 521(4):907-913
1 - 10 of 30
Show