Gene
kcnk5a
- ID
- ZDB-GENE-051113-112
- Name
- potassium channel, subfamily K, member 5a
- Symbol
- kcnk5a Nomenclature History
- Previous Names
-
- TASK-2 (1)
- zgc:123271
- Type
- protein_coding_gene
- Location
- Chr: 17 Mapping Details/Browsers
- Description
- Enables potassium channel activity. Predicted to be involved in potassium ion transmembrane transport. Predicted to act upstream of or within monoatomic ion transmembrane transport and potassium ion transport. Predicted to be located in membrane. Predicted to be active in plasma membrane. Is expressed in several structures, including eye; gill; heart; integument; and pleuroperitoneal region. Orthologous to human KCNK5 (potassium two pore domain channel subfamily K member 5).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 3 figures from 3 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa28929 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 1 of 1
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
MO1-kcnk5a | N/A | Koudrina et al., 2020 |
MO2-kcnk5a | N/A | Koudrina et al., 2020 |
1 - 2 of 2
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Potassium channel domain | Two pore domain potassium channel | Two pore domain potassium channel, TASK family |
---|---|---|---|---|---|
UniProtKB:Q32PR9 | InterPro | 513 | |||
UniProtKB:A0A8M1N7Z0 | InterPro | 513 |
1 - 2 of 2
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
kcnk5a-201
(1)
|
Ensembl | 1,949 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-188I6 | ZFIN Curated Data | |
Encodes | cDNA | MGC:123271 | ZFIN Curated Data |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001037401 (1) | 1949 nt | ||
Genomic | GenBank:BX901925 (1) | 187245 nt | ||
Polypeptide | UniProtKB:A0A8M1N7Z0 (1) | 513 aa |
- Park, S.J., Silic, M.R., Staab, P.L., Chen, J., Zackschewski, E.L., Zhang, G. (2024) Evolution of two-pore domain potassium channels and their gene expression in zebrafish embryos. Developmental Dynamics : an official publication of the American Association of Anatomists. 253(8):722-749
- Jackson, A., Lin, S.J., Jones, E.A., Chandler, K.E., Orr, D., Moss, C., Haider, Z., Ryan, G., Holden, S., Harrison, M., Burrows, N., Jones, W.D., Loveless, M., Petree, C., Stewart, H., Low, K., Donnelly, D., Lovell, S., Drosou, K., Genomics England Research Consortium, Solve-RD consortium, Varshney, G.K., Banka, S. (2023) Clinical, genetic, epidemiologic, evolutionary, and functional delineation of TSPEAR-related autosomal recessive ectodermal dysplasia 14. HGG advances. 4:100186100186
- Luo, H., Zhang, Y., Deng, Y., Li, L., Sheng, Z., Yu, Y., Lin, Y., Chen, X., Feng, P. (2021) Nxhl Controls Angiogenesis by Targeting VE-PTP Through Interaction With Nucleolin. Frontiers in cell and developmental biology. 9:728821
- Koudrina, N., Perry, S.F., Gilmour, K.M. (2020) The role of TASK-2 channels in CO2 sensing in zebrafish (Danio rerio). American journal of physiology. Regulatory, integrative and comparative physiology. 319(3):R329-R342
- Samarut, É., Swaminathan, A., Riché, R., Liao, M., Hassan-Abdi, R., Renault, S., Allard, M., Dufour, L., Cossette, P., Soussi-Yanicostas, N., Drapeau, P. (2018) γ-Aminobutyric acid receptor alpha 1 subunit loss of function causes genetic generalized epilepsy by impairing inhibitory network neurodevelopment. Epilepsia. 59(11):2061-2074
- Peña-Münzenmayer, G., Niemeyer, M.I., Sepúlveda, F.V., and Cid, L.P. (2014) Zebrafish and mouse TASK-2 K+ channels are inhibited by increased CO2 and intracellular acidification. Pflugers Archiv : European journal of physiology. 466(7):1317-27
- Perathoner, S., Daane, J.M., Henrion, U., Seebohm, G., Higdon, C.W., Johnson, S.L., Nüsslein-Volhard, C., and Harris, M.P. (2014) Bioelectric signaling regulates size in zebrafish fins. PLoS Genetics. 10(1):e1004080
- Gierten, J., Hassel, D., Schweizer, P.A., Becker, R., Katus, H.A., and Thomas, D. (2012) Identification and functional characterization of zebrafish K2P10.1 (TREK2) two-pore-domain K+ channels. Biomembranes. 1818(1):33-41
- Asakawa, K., Suster, M.L., Mizusawa, K., Nagayoshi, S., Kotani, T., Urasaki, A., Kishimoto, Y., Hibi, M., and Kawakami, K. (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proceedings of the National Academy of Sciences of the United States of America. 105(4):1255-1260
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 10 of 10
Show