Gene
fitm2
- ID
- ZDB-GENE-050508-5
- Name
- fat storage inducing transmembrane protein 2
- Symbol
- fitm2 Nomenclature History
- Previous Names
-
- fit2
- c20orf142
- wu:fc04g08
- wu:fr13b05
- zgc:110840 (1)
- Type
- protein_coding_gene
- Location
- Chr: 23 Mapping Details/Browsers
- Description
- Predicted to enable coenzyme A diphosphatase activity; diacylglycerol binding activity; and triglyceride binding activity. Acts upstream of or within several processes, including glucose homeostasis; pancreas regeneration; and type B pancreatic cell development. Predicted to be located in endoplasmic reticulum and membrane. Predicted to be active in endoplasmic reticulum membrane. Is expressed in adaxial cell and slow muscle cell. Human ortholog(s) of this gene implicated in Siddiqi syndrome. Orthologous to human FITM2 (fat storage inducing transmembrane protein 2).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 10 figures from 5 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:7154803 (5 images)
Wild Type Expression Summary
Phenotype Summary
Mutations
Targeting Reagent | Created Alleles | Citations |
---|---|---|
MO1-fitm2 | N/A | Kadereit et al., 2008 |
MO2-fitm2 | N/A | Kadereit et al., 2008 |
MO3-fitm2 | N/A | O'Hare et al., 2016 |
1 - 3 of 3
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
Siddiqi syndrome | Alliance | Siddiqi syndrome | 618635 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Fat storage-inducing transmembrane protein | Fat storage-inducing transmembrane protein 1/2 |
---|---|---|---|---|
UniProtKB:Q52KL1 | InterPro | 252 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-21C19 | ZFIN Curated Data | |
Encodes | EST | fc04g08 | ||
Encodes | EST | fr13b05 | ||
Encodes | EST | IMAGE:7154803 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:110840 | ZFIN Curated Data | |
Encodes | cDNA | MGC:174289 | ZFIN Curated Data |
1 - 6 of 6
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001020498 (1) | 1570 nt | ||
Genomic | GenBank:BX005414 (2) | 236036 nt | ||
Polypeptide | UniProtKB:Q52KL1 (1) | 252 aa |
- Zhou, Z., Zheng, L., Tang, C., Chen, Z., Zhu, R., Peng, X., Wu, X., Zhu, P. (2020) Identification of Potentially Relevant Genes for Excessive Exercise-Induced Pathological Cardiac Hypertrophy in Zebrafish. Frontiers in Physiology. 11:565307
- Basili, D., Lutfi, E., Falcinelli, S., Balbuena-Pecino, S., Navarro, I., Bertolucci, C., Capilla, E., Carnevali, O. (2019) Photoperiod Manipulation Affects Transcriptional Profile of Genes Related to Lipid Metabolism and Apoptosis in Zebrafish (Danio rerio) Larvae: Potential Roles of Gut Microbiota. Microbial ecology. 79(4):933-946
- Santangeli, S., Notarstefano, V., Maradonna, F., Giorgini, E., Gioacchini, G., Forner-Piquer, I., Habibi, H.R., Carnevali, O. (2018) Effects of diethylene glycol dibenzoate and Bisphenol A on the lipid metabolism of Danio rerio. The Science of the total environment. 636:641-655
- Wang, W., Zhang, X., Wang, Z., Qin, J., Wang, W., Tian, H., Ru, S. (2018) Bisphenol S induces obesogenic effects through deregulating lipid metabolism in zebrafish (Danio rerio) larvae. Chemosphere. 199:286-296
- Falcinelli, S., Rodiles, A., Hatef, A., Picchietti, S., Cossignani, L., Merrifield, D.L., Unniappan, S., Carnevali, O. (2017) Dietary lipid content reorganizes gut microbiota and probiotic L. rhamnosus attenuates obesity and enhances catabolic hormonal milieu in zebrafish. Scientific Reports. 7:5512
- O'Hare, E.A., Yerges-Armstrong, L.M., Perry, J.A., Shuldiner, A.R., Zaghloul, N.A. (2016) Assignment of Functional Relevance to Genes at Type 2 Diabetes-Associated Loci Through Investigation of β-Cell Mass Deficits. Molecular endocrinology (Baltimore, Md.). 30(4):429-45
- Falcinelli, S., Picchietti, S., Rodiles, A., Cossignani, L., Merrifield, D.L., Taddei, A.R., Maradonna, F., Olivotto, I., Gioacchini, G., Carnevali, O. (2015) Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism. Scientific Reports. 5:9336
- Ren, L., Tan, X.J., Xiong, Y.F., Xu, K., Zhou, Y., Zhong, H., Liu, Y., Hong, Y., Liu, S.J. (2014) Transcriptome analysis reveals positive selection on the divergent between topmouth culter and zebrafish. Gene. 552(2):265-71
- Kadereit, B., Kumar, P., Wang, W.J., Miranda, D., Snapp, E.L., Severina, N., Torregroza, I., Evans, T., and Silver, D.L. (2008) Evolutionarily conserved gene family important for fat storage. Proceedings of the National Academy of Sciences of the United States of America. 105(1):94-99
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 10 of 10
Show