Gene
itpr2
- ID
- ZDB-GENE-050419-192
- Name
- inositol 1,4,5-trisphosphate receptor, type 2
- Symbol
- itpr2 Nomenclature History
- Previous Names
-
- si:dkey-196d8.1
- Type
- protein_coding_gene
- Location
- Chr: 18 Mapping Details/Browsers
- Description
- Predicted to enable several functions, including calcium ion binding activity; inositol 1,4,5 trisphosphate binding activity; and inositol 1,4,5-trisphosphate-gated calcium channel activity. Predicted to be involved in release of sequestered calcium ion into cytosol. Predicted to act upstream of or within monoatomic ion transmembrane transport. Predicted to be located in endoplasmic reticulum and transport vesicle membrane. Predicted to be active in endoplasmic reticulum; plasma membrane; and secretory granule membrane. Human ortholog(s) of this gene implicated in amyotrophic lateral sclerosis and isolated anhidrosis with normal sweat glands. Orthologous to human ITPR2 (inositol 1,4,5-trisphosphate receptor type 2).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 5 figures from 3 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la013203Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa794 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa9038 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa10652 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa13636 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa14152 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa23267 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa36608 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa36609 | Allele with one point mutation | Unknown | Unknown | ENU | |
sa39196 | Allele with one point mutation | Unknown | Splice Site | ENU |
1 - 10 of 10
Show
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
isolated anhidrosis with normal sweat glands | Alliance | ?Anhidrosis, isolated, with normal sweat glands | 106190 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Inositol 1,4,5-trisphosphate receptor | Inositol 1,4,5-trisphosphate/ryanodine receptor | Ion transport domain | Mir domain superfamily | MIR motif | RIH domain | Ryanodine/Inositol 1,4,5-trisphosphate receptor | RyR/IP3 receptor binding core, RIH domain superfamily | RyR/IP3R Homology associated domain |
---|---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:A0A8M9PQQ3 | InterPro | 2665 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH73-42P23 | ZFIN Curated Data | |
Contained in | BAC | CH211-204P6 | ZFIN Curated Data | |
Contained in | BAC | DKEY-196D8 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:XM_021467780 (1) | 8847 nt | ||
Genomic | GenBank:BX649507 (1) | 166185 nt | ||
Polypeptide | UniProtKB:A0A8M9PQQ3 (1) | 2665 aa |
Species | Symbol | Chromosome | Accession # | Evidence |
---|---|---|---|---|
Human | ITPR2 | 12 | Amino acid sequence comparison (2) |
- Guan, K., Ye, M., Guo, A., Chen, X., Shan, Y., Li, X. (2024) Deficiency of leap2 promotes somatic growth in zebrafish: Involvement of the growth hormone system. Heliyon. 10:e36397e36397
- Guan, K., Shan, C., Guo, A., Gao, X., Li, X. (2023) Ghrelin regulates hyperactivity-like behaviors via growth hormone signaling pathway in zebrafish (Danio rerio). Frontiers in endocrinology. 14:11632631163263
- Tse, M.K., Hung, T.S., Chan, C.M., Wong, T., Dorothea, M., Leclerc, C., Moreau, M., Miller, A.L., Webb, S.E. (2018) Identification of Ca2+ signaling components in neural stem/progenitor cells during differentiation into neurons and glia in intact and dissociated zebrafish neurospheres.. Science China. Life sciences. 61(11):1352-1368
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Paavola, J., Schliffke, S., Rossetti, S., Kuo, I.Y., Yuan, S., Sun, Z., Harris, P.C., Torres, V.E., and Ehrlich, B.E. (2013) Polycystin-2 mutations lead to impaired calcium cycling in the heart and predispose to dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology. 58:199-208
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Sato, Y., Hashiguchi, Y., and Nishida, M. (2009) Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Evolutionary Biology. 9:127
- Ashworth, R., Devogelaere, B., Fabes, J., Tunwell, R.E., Koh, K.R., De Smedt, H., and Patel, S. (2007) Molecular and functional characterization of IP33 receptors during early zebrafish development. The Journal of biological chemistry. 282(19):13984-13993
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
1 - 10 of 10
Show