Gene
trim54
- ID
- ZDB-GENE-041014-342
- Name
- tripartite motif containing 54
- Symbol
- trim54 Nomenclature History
- Previous Names
-
- MuRF3 (1)
- si:dkey-221h15.2
- Type
- protein_coding_gene
- Location
- Chr: 20 Mapping Details/Browsers
- Description
- Predicted to enable ubiquitin protein ligase activity. Predicted to be involved in innate immune response. Predicted to act upstream of or within cell differentiation. Predicted to be located in microtubule and nucleus. Predicted to be active in cytoplasm. Is expressed in gill; male organism; and muscle. Orthologous to human TRIM54 (tripartite motif containing 54).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 4 figures from 4 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la021625Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa23777 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 2 of 2
Show
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | B-box-type zinc finger | COS domain | E3 ubiquitin-protein ligases and FN3/SPRY domain-containing proteins | TRIM54, RING finger, HC subclass | Tripartite motif-containing protein 54, B-box-type 2 zinc finger | Zinc finger, RING/FYVE/PHD-type | Zinc finger, RING-type | Zinc finger, RING-type, conserved site | Zinc finger, RING-type, eukaryotic |
---|---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:Q5RHH1 | InterPro | 359 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
trim54-201
(1)
|
Ensembl | 1,522 nt | ||
mRNA |
trim54-202
(1)
|
Ensembl | 429 nt |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-243J20 | ZFIN Curated Data | |
Contained in | BAC | DKEY-221H15 | ZFIN Curated Data | |
Encodes | cDNA | MGC:162786 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001045025 (1) | 1522 nt | ||
Genomic | GenBank:BX511178 (1) | 187362 nt | ||
Polypeptide | UniProtKB:Q5RHH1 (1) | 359 aa |
- Li, B., Li, S., He, Q., Du, S. (2019) Generation of MuRF-GFP transgenic zebrafish models for investigating murf gene expression and protein localization in Smyd1b and Hsp90α1 knockdown embryos. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology. 240:110368
- Shimizu, H., Langenbacher, A.D., Huang, J., Wang, K., Otto, G., Geisler, R., Wang, Y., Chen, J.N. (2017) The Calcineurin-FoxO-MuRF1 signaling pathway regulates myofibril integrity in cardiomyocytes. eLIFE. 6
- Li, M., Andersson-Lendahl, M., Sejersen, T., Arner, A. (2016) Knockdown of fast skeletal myosin-binding protein C in zebrafish results in a severe skeletal myopathy. The Journal of general physiology. 147:309-22
- Macqueen, D.J., Fuentes, E.N., Valdés, J.A., Molina, A., Martin, S.A. (2014) The vertebrate muscle-specific RING finger protein family includes MuRF4 - A novel, conserved E3-ubiquitin ligase. FEBS letters. 588:4390-4397
- Krauss, J., Astrinidis, P., Frohnhöfer, H.G., Walderich, B., and Nüsslein-Volhard, C. (2013) transparent, a gene affecting stripe formation in Zebrafish, encodes the mitochondrial protein Mpv17 that is required for iridophore survival. Biology Open. 2(7):703-710
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Boudinot, P., van der Aa, L.M., Jouneau, L., Du Pasquier, L., Pontarotti, P., Briolat, V., Benmansour, A., and Levraud, J.P. (2011) Origin and Evolution of TRIM Proteins: New Insights from the Complete TRIM Repertoire of Zebrafish and Pufferfish. PLoS One. 6(7):e22022
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 9 of 9
Show