Gene
dhrs3a
- ID
- ZDB-GENE-040801-217
- Name
- dehydrogenase/reductase (SDR family) member 3a
- Symbol
- dhrs3a Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 23 Mapping Details/Browsers
- Description
- Predicted to enable all-trans-retinol dehydrogenase (NAD+) activity. Acts upstream of or within regulation of retinoic acid receptor signaling pathway. Predicted to be located in membrane. Predicted to be active in lipid droplet. Is expressed in several structures, including mesoderm; nervous system; optic fissure; presumptive mesoderm; and pronephric duct. Orthologous to human DHRS3 (dehydrogenase/reductase 3).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 19 figures from 10 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- MGC:91839 (11 images)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
No data available
Targeting Reagent | Created Alleles | Citations |
---|---|---|
MO1-dhrs3a | N/A | Feng et al., 2010 |
MO2-dhrs3a | N/A | Feng et al., 2010 |
MO3-dhrs3a | N/A | Feng et al., 2010 |
1 - 3 of 3
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | NAD(P)-binding domain superfamily | Short-chain dehydrogenase/reductase SDR |
---|---|---|---|---|
UniProtKB:Q6DBS5 | InterPro | 302 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
dhrs3a-201
(1)
|
Ensembl | 1,723 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-145D10 | ZFIN Curated Data | |
Contains | STS | chunp428 | ||
Encodes | EST | fc04h12 | ||
Encodes | cDNA | MGC:91839 | ZFIN Curated Data | |
Encodes | cDNA | MGC:191244 | ZFIN Curated Data |
1 - 5 of 5
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001003477 (1) | 1637 nt | ||
Genomic | GenBank:CR548634 (2) | 153164 nt | ||
Polypeptide | UniProtKB:Q6DBS5 (1) | 302 aa |
- Derrick, C.J., Pollitt, E.J.G., Sevilla Uruchurtu, A.S., Hussein, F., Grierson, A.J., Noël, E.S. (2021) Lamb1a regulates atrial growth by limiting second heart field addition during zebrafish heart development. Development (Cambridge, England). 148(20)
- Ma, X., Zhu, P., Ding, Y., Zhang, H., Qiu, Q., Dvornikov, A.V., Wang, Z., Kim, M., Wang, Y., Lowerison, M., Yu, Y., Norton, N., Herrmann, J., Ekker, S.C., Hsiai, T.K., Lin, X., Xu, X. (2020) Retinoid X receptor alpha is a spatiotemporally predominant therapeutic target for anthracycline-induced cardiotoxicity. Science advances. 6:eaay2939
- Solanki, A.K., Kondkar, A.A., Fogerty, J., Su, Y., Kim, S.H., Lipschutz, J.H., Nihalani, D., Perkins, B.D., Lobo, G.P. (2020) A Functional Binding Domain in the Rbpr2 Receptor Is Required for Vitamin A Transport, Ocular Retinoid Homeostasis, and Photoreceptor Cell Survival in Zebrafish. Cells. 9(5):
- Navarro-Martín, L., Oliveira, E., Casado, M., Barata, C., Piña, B. (2017) Dysregulatory effects of retinoic acid isomers in late zebrafish embryos. Environmental science and pollution research international. 25(4):3849-3859
- Shi, Y., Obert, E., Rahman, B., Rohrer, B., Lobo, G.P. (2017) The Retinol Binding Protein Receptor 2 (Rbpr2) is required for Photoreceptor Outer Segment Morphogenesis and Visual Function in Zebrafish. Scientific Reports. 7:16207
- Wu, Y., Su, G., Tang, S., Liu, W., Ma, Z., Zheng, X., Liu, H., Yu, H. (2017) The combination of in silico and in vivo approaches for the investigation of disrupting effects of tris (2-chloroethyl) phosphate (TCEP) toward core receptors of zebrafish. Chemosphere. 168:122-130
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Jimenez, L., Wang, J., Morrison, M.A., Whatcott, C., Soh, K.K., Warner, S., Bearss, D., Jette, C.A., Stewart, R.A. (2016) Phenotypic chemical screening using zebrafish neural crest reporters identifies retinoid acid as an inhibitor of epithelial morphogenesis. Disease models & mechanisms. 9(4):389-400
- D'Aniello, E., Ravisankar, P., Waxman, J.S. (2015) Rdh10a Provides a Conserved Critical Step in the Synthesis of Retinoic Acid during Zebrafish Embryogenesis. PLoS One. 10:e0138588
- Rydeen, A.B., Waxman, J.S. (2014) Cyp26 enzymes are required to balance the cardiac and vascular lineages within the anterior lateral plate mesoderm. Development (Cambridge, England). 141:1638-48
1 - 10 of 21
Show