Gene
eif3i
- ID
- ZDB-GENE-040426-1922
- Name
- eukaryotic translation initiation factor 3, subunit I
- Symbol
- eif3i Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 19 Mapping Details/Browsers
- Description
- Predicted to enable RNA binding activity and translation initiation factor activity. Acts upstream of or within liver development and sprouting angiogenesis. Predicted to be located in cytoplasm. Predicted to be part of eukaryotic translation initiation factor 3 complex, eIF3m. Is expressed in several structures, including digestive system; endothelial cell; nervous system; otic vesicle; and pectoral fin. Orthologous to human EIF3I (eukaryotic translation initiation factor 3 subunit I).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 7 figures from 4 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- MGC:56211 (1 image)
Wild Type Expression Summary
- All Phenotype Data
- 2 figures from Yuan et al., 2014
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la010697Tg | Transgenic insertion | Exon 2 | Premature Stop | DNA | |
sa18588 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 2 of 2
Show
No data available
Human Disease
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Conserved_site | IPR019775 | WD40 repeat, conserved site |
Family | IPR027525 | Eukaryotic translation initiation factor 3 subunit I |
Homologous_superfamily | IPR015943 | WD40/YVTN repeat-like-containing domain superfamily |
Homologous_superfamily | IPR036322 | WD40-repeat-containing domain superfamily |
Repeat | IPR001680 | WD40 repeat |
1 - 5 of 5
Domain Details Per Protein
Protein | Additional Resources | Length | Eukaryotic translation initiation factor 3 subunit I | WD40 repeat | WD40 repeat, conserved site | WD40-repeat-containing domain superfamily | WD40/YVTN repeat-like-containing domain superfamily |
---|---|---|---|---|---|---|---|
UniProtKB:Q7ZV55 | InterPro | 325 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH73-130A3 | ZFIN Curated Data | |
Encodes | EST | fb62b08 | ZFIN Curated Data | |
Encodes | EST | fq38d09 | Rauch et al., 2003 | |
Encodes | EST | zehn0464 | ZFIN Curated Data | |
Encodes | cDNA | MGC:56211 | ZFIN Curated Data | |
Encodes | cDNA | MGC:77823 |
1 - 6 of 6
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_212990 (1) | 1322 nt | ||
Genomic | GenBank:CU633192 (1) | 93120 nt | ||
Polypeptide | UniProtKB:Q7ZV55 (1) | 325 aa |
- Wang, S., Yang, Q., Wang, Z., Feng, S., Li, H., Ji, D., Zhang, S. (2018) Evolutionary and Expression Analyses Show Co-option of khdrbs Genes for Origin of Vertebrate Brain.. Frontiers in genetics. 8:225
- Zhang, Y., Wang, P., Zhang, Q., Yao, X., Zhao, L., Liu, Y., Liu, X., Tao, R., Yu, C., Li, Y., Song, X., Yao, S. (2017) eIF3i activity is critical for endothelial cells in tumor induced angiogenesis through regulating VEGFR and ERK translation. Oncotarget. 8(12):19968-19979
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Yuan, Y., Zhang, Y., Yao, S., Shi, H., Huang, X., Li, Y., Wei, Y., Lin, S. (2014) The translation initiation factor Eif3i upregulates vascular endothelial growth factor A, accelerates cell proliferation, and promotes angiogenesis in embryonic development and tumorigenesis. The Journal of biological chemistry. 289(41):28310-23
- Hagenaars, A., Vergauwen, L., Benoot, D., Laukens, K., and Knapen, D. (2013) Mechanistic toxicity study of perfluorooctanoic acid in zebrafish suggests mitochondrial dysfunction to play a key role in PFOA toxicity. Chemosphere. 91(6):844-56
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
- Ton, C., Hwang, D.M., Dempsey, A.A., Tang, H.C., Yoon, J., Lim, M., Mably, J.D., Fishman, M.C., and Liew, C.C. (2000) Identification, characterization, and mapping of expressed sequence tags from an embryonic zebrafish heart cDNA library. Genome research. 10(12):1915-1927
- Geisler, R., Rauch, G.J., Baier, H., van Bebber, F., Brobeta, L., Dekens, M.P., Finger, K., Fricke, C., Gates, M.A., Geiger, H., Geiger-Rudolph, S., Gilmour, D., Glaser, S., Gnugge, L., Habeck, H., Hingst, K., Holley, S., Keenan, J., Kirn, A., Knaut, H., Lashkari, D., Maderspacher, F., Martyn, U., Neuhauss, S., Neumann, C., Nicolson, T., Pelegri, F., Ray, R., Rick, J.M., Roehl, H., Roeser, T., Schauerte, H.E., Schier, A.F., Schönberger, U., Schönthaler, H.-B., Schulte-Merker, S., Seydler, C., Talbot, W.S., Weiler, C., Nüsslein-Volhard, C., and Haffter, P. (1999) A radiation hybrid map of the zebrafish genome. Nature Genetics. 23(1):86-89
1 - 10 of 10
Show