Gene
pvalb9
- ID
- ZDB-GENE-030805-4
- Name
- parvalbumin 9
- Symbol
- pvalb9 Nomenclature History
- Previous Names
-
- ocmb
- pvalb3b (1)
- oncomodulin B
- zgc:110493
- Type
- protein_coding_gene
- Location
- Chr: 12 Mapping Details/Browsers
- Description
- Predicted to enable calcium ion binding activity. Predicted to be active in cytoplasm. Is expressed in inner ear; pronephric duct; yolk; and yolk syncytial layer. Orthologous to human OCM (oncomodulin) and OCM2 (oncomodulin 2).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 7 figures from 5 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa468 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 1 of 1
Show
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | EF-Hand 1, calcium-binding site | EF-hand domain | EF-hand domain pair | Parvalbumin |
---|---|---|---|---|---|---|
UniProtKB:Q800A1 | InterPro | 109 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
pvalb9-201
(1)
|
Ensembl | 803 nt | ||
mRNA |
pvalb9-203
(1)
|
Ensembl | 1,414 nt | ||
ncRNA |
pvalb9-002
(1)
|
Ensembl | 714 nt |
1 - 3 of 3
Interactions and Pathways
No data available
Plasmids
No data available
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(-2.9pvalb9:EGFP) |
|
| 2 | (8) | |
Tg(-4.8pvalb9:EGFP) |
|
| 1 | (3) | |
Tg(pvalb9:actb2-mCherry) |
|
| 1 | (5) | |
Tg(pvalb9:ctbp2a-mCherry) |
|
| 1 | Chen et al., 2017 | |
Tg(pvalb9:EGFP-fscn2b) |
|
| 1 | (2) | |
Tg(pvalb9:EGFP-fscn2b_S38A) |
|
| 1 | Hwang et al., 2015 | |
Tg(pvalb9:EGFP-fscn2b_S38E) |
|
| 1 | (2) | |
Tg(pvalb9:Hsa.CLRN1_c.144T>G-YFP) |
|
| 1 | (4) | |
Tg(pvalb9:Hsa.CLRN1-YFP) |
|
| 1 | (3) | |
Tg(pvalb9:mCherry) |
|
| 1 | Chen et al., 2017 |
1 - 10 of 11
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-33F9 | ZFIN Curated Data | |
Encodes | cDNA | MGC:110493 | ZFIN Curated Data |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_182938 (1) | 650 nt | ||
Genomic | GenBank:CR932017 (2) | 165406 nt | ||
Polypeptide | UniProtKB:Q800A1 (1) | 109 aa |
Species | Symbol | Chromosome | Accession # | Evidence |
---|---|---|---|---|
Human | OCM | 7 | Amino acid sequence comparison (2) Conserved genome location (synteny) (1) Phylogenetic tree (2) | |
Human | OCM2 | 7 | Phylogenetic tree (1) Conserved genome location (synteny) (1) Amino acid sequence comparison (3) | |
Mouse | Ocm | 5 | Amino acid sequence comparison (4) Conserved genome location (synteny) (1) Phylogenetic tree (2) |
- Shi, T., Beaulieu, M.O., Saunders, L.M., Fabian, P., Trapnell, C., Segil, N., Crump, J.G., Raible, D.W. (2023) Single-cell transcriptomic profiling of the zebrafish inner ear reveals molecularly distinct hair cell and supporting cell subtypes. eLIFE. 12:
- Lai, T.W., Cheng, H.L., Su, T.R., Yang, J.J., Su, C.C. (2022) Cichoric Acid May Play a Role in Protecting Hair Cells from Ototoxic Drugs. International Journal of Molecular Sciences. 23(12)
- Desvignes, T., Sydes, J., Montfort, J., Bobe, J., Postlethwait, J.H. (2021) Evolution after whole genome duplication: teleost microRNAs. Molecular Biology and Evolution. 38(8):3308-3331
- Manchanda, A., Bonventre, J.A., Bugel, S.M., Chatterjee, P., Tanguay, R., Johnson, C.P. (2021) Truncation of the otoferlin transmembrane domain alters the development of hair cells and reduces membrane docking. Molecular biology of the cell. 32(14):1293-1305
- Takashima, S., Takemoto, S., Toyoshi, K., Ohba, A., Shimozawa, N. (2021) Zebrafish model of human Zellweger syndrome reveals organ-specific accumulation of distinct fatty acid species and widespread gene expression changes. Molecular genetics and metabolism. 133(3):307-323
- Vona, B., Mazaheri, N., Lin, S.J., Dunbar, L.A., Maroofian, R., Azaiez, H., Booth, K.T., Vitry, S., Rad, A., Rüschendorf, F., Varshney, P., Fowler, B., Beetz, C., Alagramam, K.N., Murphy, D., Shariati, G., Sedaghat, A., Houlden, H., Petree, C., VijayKumar, S., Smith, R.J.H., Haaf, T., El-Amraoui, A., Bowl, M.R., Varshney, G.K., Galehdari, H. (2021) A biallelic variant in CLRN2 causes non-syndromic hearing loss in humans. Human genetics. 140(6):915-931
- Manchanda, A., Chatterjee, P., Bonventre, J.A., Haggard, D.E., Kindt, K.S., Tanguay, R.L., Johnson, C.P. (2019) Otoferlin Depletion Results in Abnormal Synaptic Ribbons and Altered Intracellular Calcium Levels in Zebrafish. Scientific Reports. 9:14273
- Lissouba, A., Liao, M., Kabashi, E., Drapeau, P. (2018) Transcriptomic Analysis of Zebrafish TDP-43 Transgenic Lines. Frontiers in molecular neuroscience. 11:463
- Chen, Z., Chou, S.W., McDermott, B.M. (2017) Ribeye protein is intrinsically dynamic but is stabilized in the context of the ribbon synapse. The Journal of physiology. 596(3):409-421
- Modrell, M.S., Lyne, M., Carr, A.R., Zakon, H.H., Buckley, D., Campbell, A.S., Davis, M.C., Micklem, G., Baker, C.V. (2017) Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome. eLIFE. 6
1 - 10 of 23
Show