Gene
cct5
- ID
- ZDB-GENE-030131-977
- Name
- chaperonin containing TCP1, subunit 5 (epsilon)
- Symbol
- cct5 Nomenclature History
- Previous Names
-
- TCP-1 epsilon (1)
- unm tf212
- unm_tf212
- wu:fb54h08
- Type
- protein_coding_gene
- Location
- Chr: 24 Mapping Details/Browsers
- Description
- Predicted to enable unfolded protein binding activity. Acts upstream of or within retina layer formation and skeletal muscle thin filament assembly. Predicted to be located in cytoplasm. Predicted to be part of chaperonin-containing T-complex. Is expressed in several structures, including epidermis; nervous system; pharyngeal arch 3-7 skeleton; proliferative region; and yolk syncytial layer. Orthologous to human CCT5 (chaperonin containing TCP1 subunit 5).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 14 figures from 3 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:7147715 (1 image)
Wild Type Expression Summary
- All Phenotype Data
- 12 figures from 6 publications
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Targeting Reagent | Created Alleles | Citations |
---|---|---|
MO1-cct5 | N/A | Berger et al., 2018 |
MO2-cct5 | N/A | Berger et al., 2018 |
1 - 2 of 2
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
?Neuropathy, hereditary sensory, with spastic paraplegia | 256840 |
1 - 1 of 1
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Conserved_site | IPR002194 | Chaperonin TCP-1, conserved site |
Family | IPR002423 | Chaperonin Cpn60/GroEL/TCP-1 family |
Family | IPR012718 | T-complex protein 1, epsilon subunit |
Family | IPR017998 | Chaperone tailless complex polypeptide 1 (TCP-1) |
Family | IPR053374 | TCP-1 chaperonin-containing T-complex |
1 - 5 of 9 Show all
Domain Details Per Protein
Protein | Additional Resources | Length | Chaperone tailless complex polypeptide 1 (TCP-1) | Chaperonin Cpn60/GroEL/TCP-1 family | Chaperonin TCP-1, conserved site | GroEL-like apical domain superfamily | GroEL-like equatorial domain superfamily | T-complex protein 1, epsilon subunit | TCP-1 chaperonin-containing T-complex | TCP-1-like chaperonin intermediate domain superfamily | Thermosome subunit alpha |
---|---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:Q6NVI6 | InterPro | 541 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(-1.8cct5:EGFP,cryaa:mCherry) |
|
| 1 | Berger et al., 2018 |
1 - 1 of 1
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-30N5 | ZFIN Curated Data | |
Encodes | EST | fb19f06 | Rauch et al., 2003 | |
Encodes | EST | fb54h08 | ||
Encodes | EST | IMAGE:7147715 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:77639 | ZFIN Curated Data |
1 - 5 of 5
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_212613 (1) | 1896 nt | ||
Genomic | GenBank:BX469922 (1) | 200409 nt | ||
Polypeptide | UniProtKB:Q6NVI6 (1) | 541 aa |
- Berger, S., D Currie, P., Berger, J. (2023) The Role of TRiC-enhanced Actin Folding in Leber Congenital Amaurosis. Journal of Ophthalmic & Vision Research. 18:606760-67
- Young, R.M., Hawkins, T.A., Cavodeassi, F., Stickney, H.L., Schwarz, Q., Lawrence, L.M., Wierzbicki, C., Cheng, B.Y., Luo, J., Ambrosio, E.M., Klosner, A., Sealy, I.M., Rowell, J., Trivedi, C.A., Bianco, I.H., Allende, M.L., Busch-Nentwich, E.M., Gestri, G., Wilson, S.W. (2019) Compensatory growth renders Tcf7l1a dispensable for eye formation despite its requirement in eye field specification. eLIFE. 8:
- Berger, J., Berger, S., Li, M., Jacoby, A.S., Arner, A., Bavi, N., Stewart, A.G., Currie, P.D. (2018) In Vivo Function of the Chaperonin TRiC in α-Actin Folding during Sarcomere Assembly. Cell Reports. 22:313-322
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Shim, H., Kim, J.H., Kim, C.Y., Hwang, S., Kim, H., Yang, S., Lee, J.E., Lee, I. (2016) Function-driven discovery of disease genes in zebrafish using an integrated genomics big data resource. Nucleic acids research. 44:9611-9623
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Higdon, C.W., Mitra, R.D., and Johnson, S.L. (2013) Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin. PLoS One. 8(7):e67801
- Lucitt, M.B., Price, T.S., Pizarro, A., Wu, W., Yocum, A.K., Seiler, C., Pack, M.A., Blair, I.A., Fitzgerald, G.A., and Grosser, T. (2008) Analysis of the zebrafish proteome during embryonic development. Molecular & cellular proteomics : MCP. 7(5):981-994
- Woods, I.G., Wilson, C., Friedlander, B., Chang, P., Reyes, D.K., Nix, R., Kelly, P.D., Chu, F., Postlethwait, J.H., and Talbot, W.S. (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome research. 15(9):1307-1314
- Amsterdam, A., Nissen, R.M., Sun, Z., Swindell, E., Farrington, S., and Hopkins, N. (2004) Identification of 315 genes essential for early zebrafish development. Proceedings of the National Academy of Sciences of the United States of America. 101(35):12792-12797
1 - 10 of 13
Show