Gene
paics
- ID
- ZDB-GENE-030131-9762
- Name
- phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase
- Symbol
- paics Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 20 Mapping Details/Browsers
- Description
- Predicted to enable phosphoribosylaminoimidazolesuccinocarboxamide synthase activity. Acts upstream of or within chordate embryonic development; pigmentation; and retina development in camera-type eye. Is expressed in several structures, including eye; immature eye; midbrain; neural tube; and yolk syncytial layer. Human ortholog(s) of this gene implicated in schizophrenia. Orthologous to human PAICS (phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 15 figures from 4 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- cb293 (9 images)
- IMAGE:7145230 (14 images)
Wild Type Expression Summary
Phenotype Summary
Mutations
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
?Phosphoribosylaminoimidazole carboxylase deficiency | 619859 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Class II PurE | Myb/SANT-like DNA-binding domain 4 | PurE domain | SAICAR synthetase | SAICAR synthetase/ADE2, N-terminal | SAICAR synthetase, conserved site |
---|---|---|---|---|---|---|---|---|
UniProtKB:Q7ZUN6 | InterPro | 425 | ||||||
UniProtKB:A0AB32TF25 | InterPro | 1042 |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEYP-117H8 | ZFIN Curated Data | |
Encodes | EST | cb293 | Thisse et al., 2001 | |
Encodes | EST | fa28a05 | ZFIN Curated Data | |
Encodes | EST | IMAGE:7145230 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:55576 | ZFIN Curated Data | |
Encodes | cDNA | MGC:86906 | ZFIN Curated Data |
1 - 6 of 6
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_199537 (1) | 1558 nt | ||
Genomic | GenBank:CR352243 (1) | 121253 nt | ||
Polypeptide | UniProtKB:A0AB32TF25 (1) | 1042 aa |
- Lewis, V.M., Saunders, L.M., Larson, T.A., Bain, E.J., Sturiale, S.L., Gur, D., Chowdhury, S., Flynn, J.D., Allen, M.C., Deheyn, D.D., Lee, J.C., Simon, J.A., Lippincott-Schwartz, J., Raible, D.W., Parichy, D.M. (2019) Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores. Proceedings of the National Academy of Sciences of the United States of America. 116(24):11806-11811
- Weger, M., Weger, B.D., Görling, B., Poschet, G., Yildiz, M., Hell, R., Luy, B., Akcay, T., Güran, T., Dickmeis, T., Müller, F., Krone, N. (2018) Glucocorticoid deficiency causes transcriptional and post-transcriptional reprogramming of glutamine metabolism. EBioMedicine. 36:376-389
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Yin, X., Wang, H., Zhang, Y., Dahlgren, R.A., Zhang, H., Shi, M., Gao, M., Wang, X. (2014) Toxicological Assessment of Trace β-Diketone Antibiotic Mixtures on Zebrafish (Danio rerio) by Proteomic Analysis. PLoS One. 9:e102731
- Greenhill, E.R., Rocco, A., Vibert, L., Nikaido, M., and Kelsh, R.N. (2011) An iterative genetic and dynamical modelling approach identifies novel features of the gene regulatory network underlying melanocyte development. PLoS Genetics. 7(9):e1002265
- Ng, A., Uribe, R.A., Yieh, L., Nuckels, R., and Gross, J.M. (2009) Zebrafish mutations in gart and paics identify crucial roles for de novo purine synthesis in vertebrate pigmentation and ocular development. Development (Cambridge, England). 136(15):2601-2611
- Ng, Y.K., Wu, W., and Zhang, L. (2009) Positive correlation between gene coexpression and positional clustering in the zebrafish genome. BMC Genomics. 10:42
- Gross, J.M., Perkins, B.D., Amsterdam, A., Egana, A., Darland, T., Matsui, J.I., Sciascia, S., Hopkins, N., and Dowling, J.E. (2005) Identification of Zebrafish Insertional Mutants with Defects in Visual System Development and Function. Genetics. 170(1):245-261
- Woods, I.G., Wilson, C., Friedlander, B., Chang, P., Reyes, D.K., Nix, R., Kelly, P.D., Chu, F., Postlethwait, J.H., and Talbot, W.S. (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome research. 15(9):1307-1314
1 - 10 of 12
Show