Gene
cdh15
- ID
- ZDB-GENE-030131-780
- Name
- cadherin 15, type 1, M-cadherin (myotubule)
- Symbol
- cdh15 Nomenclature History
- Previous Names
-
- fb48f12
- wu:fb48f12
- Type
- protein_coding_gene
- Location
- Chr: 7 Mapping Details/Browsers
- Description
- Predicted to enable beta-catenin binding activity and cadherin binding activity. Predicted to be involved in several processes, including calcium-dependent cell-cell adhesion via plasma membrane cell adhesion molecules; cell-cell adhesion mediated by cadherin; and cell-cell junction organization. Predicted to act upstream of or within homophilic cell adhesion via plasma membrane adhesion molecules. Predicted to be located in cell-cell junction; cytoplasm; and plasma membrane. Predicted to be part of catenin complex. Predicted to be active in adherens junction. Is expressed in adaxial cell; musculature system; pectoral fin; and somite. Human ortholog(s) of this gene implicated in autosomal dominant intellectual developmental disorder 3. Orthologous to human CDH15 (cadherin 15).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 14 figures from 7 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- eu141 (10 images)
Wild Type Expression Summary
- All Phenotype Data
- 2 figures from Cortés et al., 2003
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la026167Tg | Transgenic insertion | Unknown | Unknown | DNA | |
la026168Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa695 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa11460 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 4 of 4
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-cdh15 | Tsai et al., 2020 | |
CRISPR2-cdh15 | Tsai et al., 2020 | |
CRISPR3-cdh15 | Tsai et al., 2020 | |
CRISPR4-cdh15 | Tsai et al., 2020 | |
MO1-cdh15 | N/A | Cortés et al., 2003 |
MO2-cdh15 | N/A | Cortés et al., 2003 |
MO3-cdh15 | N/A | Cortés et al., 2003 |
1 - 7 of 7
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
autosomal dominant intellectual developmental disorder 3 | Alliance | Intellectual developmental disorder, autosomal dominant 3 | 612580 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Cadherin | Cadherin conserved site | Cadherin-like | Cadherin-like superfamily | Cadherin, Y-type LIR-motif | Catenin binding domain superfamily |
---|---|---|---|---|---|---|---|---|
UniProtKB:E9QEL7 | InterPro | 792 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-245P24 | ZFIN Curated Data | |
Encodes | EST | eu141 | Thisse et al., 2005 | |
Encodes | EST | fb48f12 |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_212606 (1) | 2785 nt | ||
Genomic | GenBank:CR847992 (1) | 168678 nt | ||
Polypeptide | UniProtKB:E9QEL7 (1) | 792 aa |
- Lin, Z., Luo, M., Zhou, B., Liu, Y., Sun, H. (2021) CFTR regulates embryonic T lymphopoiesis via Wnt signaling in zebrafish. Immunology Letters. 234:47-53
- Tsai, T.Y., Sikora, M., Xia, P., Colak-Champollion, T., Knaut, H., Heisenberg, C.P., Megason, S.G. (2020) An adhesion code ensures robust pattern formation during tissue morphogenesis. Science (New York, N.Y.). 370:113-116
- England, S.J., Campbell, P.C., Banerjee, S., Swanson, A.J., Lewis, K.E. (2017) Identification and Expression Analysis of the Complete Family of Zebrafish pkd Genes.. Frontiers in cell and developmental biology. 5:5
- Tenente, I.M., Hayes, M.N., Ignatius, M.S., McCarthy, K., Yohe, M., Sindiri, S., Gryder, B., Oliveira, M.L., Ramakrishnan, A., Tang, Q., Chen, E.Y., Petur Nielsen, G., Khan, J., Langenau, D.M. (2017) Myogenic regulatory transcription factors regulate growth in rhabdomyosarcoma. eLIFE. 6
- Mosimann, C., Panáková, D., Werdich, A.A., Musso, G., Burger, A., Lawson, K.L., Carr, L.A., Nevis, K.R., Sabeh, M.K., Zhou, Y., Davidson, A.J., DiBiase, A., Burns, C.E., Burns, C.G., MacRae, C.A., Zon, L.I. (2015) Chamber identity programs drive early functional partitioning of the heart. Nature communications. 6:8146
- Albacker, C.E., Storer, N.Y., Langdon, E.M., Dibiase, A., Zhou, Y., Langenau, D.M., and Zon, L.I. (2013) The Histone Methyltransferase SUV39H1 Suppresses Embryonal Rhabdomyosarcoma Formation in Zebrafish. PLoS One. 8(5):e64969
- Storer, N.Y., White, R.M., Uong, A., Price, E., Nielsen, G.P., Langenau, D.M., and Zon, L.I. (2013) Zebrafish rhabdomyosarcoma reflects the developmental stage of oncogene expression during myogenesis. Development (Cambridge, England). 140(14):3040-3050
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Ignatius, M.S., Chen, E., Elpek, N.M., Fuller, A.Z., Tenente, I.M., Clagg, R., Liu, S., Blackburn, J.S., Linardic, C.M., Rosenberg, A.E., Nielsen, P.G., Mempel, T.R., and Langenau, D.M. (2012) In Vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma. Cancer Cell. 21(5):680-693
- Moore, F.E., Reyon, D., Sander, J.D., Martinez, S.A., Blackburn, J.S., Khayter, C., Ramirez, C.L., Joung, J.K., and Langenau, D.M. (2012) Improved Somatic Mutagenesis in Zebrafish Using Transcription Activator-Like Effector Nucleases (TALENs). PLoS One. 7(5):e37877
1 - 10 of 15
Show