Gene
fxyd6
- ID
- ZDB-GENE-030131-5919
- Name
- FXYD domain containing ion transport regulator 6
- Symbol
- fxyd6 Nomenclature History
- Previous Names
-
- si:dkey-36i7.1
- wu:fi25c12
- zgc:63716
- Type
- protein_coding_gene
- Location
- Chr: 15 Mapping Details/Browsers
- Description
- Predicted to enable sodium channel regulator activity. Predicted to be involved in positive regulation of sodium ion export across plasma membrane. Predicted to act upstream of or within monoatomic ion transport and regulation of monoatomic ion transport. Predicted to be located in plasma membrane. Is expressed in basal plate midbrain region; central nervous system; and head. Orthologous to several human genes including FXYD6 (FXYD domain containing ion transport regulator 6).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 7 figures from 2 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- MGC:63716 (6 images)
Wild Type Expression Summary
- All Phenotype Data
- 1 Figure from Robu et al., 2007
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-fxyd6 | Suresh et al., 2022 | |
CRISPR2-fxyd6 | Suresh et al., 2022 | |
CRISPR3-fxyd6 | Suresh et al., 2022 | |
MO1-fxyd6 | N/A | Robu et al., 2007 |
MO2-fxyd6 | N/A | Robu et al., 2007 |
1 - 5 of 5
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Ion-transport regulator, FXYD family | Ion-transport regulator, FXYD motif |
---|---|---|---|---|
UniProtKB:Q7SZ52 | InterPro | 99 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-163P9 | ||
Contained in | BAC | DKEY-36I7 | ||
Encodes | EST | fi25c12 | ||
Encodes | cDNA | MGC:63716 | ZFIN Curated Data |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_199847 (1) | 886 nt | ||
Genomic | GenBank:CU013546 | 133846 nt | ||
Polypeptide | UniProtKB:Q7SZ52 (1) | 99 aa |
- Suresh, S., Rabbie, R., Garg, M., Lumaquin, D., Huang, T.H., Montal, E., Ma, Y., Cruz, N.M., Tang, X., Nsengimana, J., Newton-Bishop, J., Hunter, M.V., Zhu, Y., Chen, K., de Stanchina, E., Adams, D.J., White, R.M. (2022) Identifying the transcriptional drivers of metastasis embedded within localized melanoma. Cancer discovery. 13(1):194-215
- Esbaugh, A.J., Brix, K.V., Grosell, M. (2019) Na+ K+ ATPase isoform switching in zebrafish during transition to dilute freshwater habitats. Proceedings. Biological sciences. 286:20190630
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Grayfer, L., and Belosevic, M. (2012) Indentification and molecular characterization of the interleukin-10 receptor 1 of the zebrafish (Danio rerio) and the goldfish (Carassius auratus L.). Developmental and comparative immunology. 36(2):408-17
- Saito, K., Nakamura, N., Ito, Y., Hoshijima, K., Esaki, M., Zhao, B., Hirose, S. (2010) Identification of zebrafish Fxyd11a protein that is highly expressed in ion-transporting epithelium of the gill and skin and its possible role in ion homeostasis. Frontiers in Physiology. 1:129
- Robu, M.E., Larson, J.D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S.A., and Ekker, S.C. (2007) p53 activation by knockdown technologies. PLoS Genetics. 3(5):e78
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 7 of 7
Show