Gene
scrt2
- ID
- ZDB-GENE-030131-4097
- Name
- scratch family zinc finger 2
- Symbol
- scrt2 Nomenclature History
- Previous Names
-
- fc69h09
- wu:fc69h09
- zgc:162551
- Type
- protein_coding_gene
- Location
- Chr: 8 Mapping Details/Browsers
- Description
- Enables DNA-binding transcription repressor activity, RNA polymerase II-specific and E-box binding activity. Involved in negative regulation of extrinsic apoptotic signaling pathway via death domain receptors; negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator; and negative regulation of transcription by RNA polymerase II. Acts upstream of or within regulation of DNA damage response, signal transduction by p53 class mediator; regulation of neural precursor cell proliferation; and regulation of neuron apoptotic process. Located in chromatin. Is expressed in nervous system; spinal cord neural keel; spinal cord neural tube; and trigeminal placode. Orthologous to human SCRT2 (scratch family transcriptional repressor 2).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 9 figures from 4 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
Phenotype Summary
Mutations
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Snail/Krueppel C2H2-type Zinc-finger | Zinc finger C2H2 superfamily | Zinc finger C2H2-type |
---|---|---|---|---|---|
UniProtKB:Q6YI50 | InterPro | 312 |
1 - 1 of 1
- Genome Browsers
Interactions and Pathways
No data available
Plasmids
- England, S.J., Rusnock, A.K., Mujcic, A., Kowalchuk, A., de Jager, S., Hilinski, W.C., Juárez-Morales, J.L., Smith, M.E., Grieb, G., Banerjee, S., Lewis, K.E. (2023) Molecular analyses of zebrafish V0v spinal interneurons and identification of transcriptional regulators downstream of Evx1 and Evx2 in these cells. Neural Development. 18:88
- Wang, M., Du, L., Lee, A.C., Li, Y., Qin, H., He, J. (2020) Different lineage contexts direct common pro-neural factors to specify distinct retinal cell subtypes. The Journal of cell biology. 219(9):
- Diotel, N., Viales, R.R., Armant, O., März, M., Ferg, M., Rastegar, S., Strähle, U. (2015) Comprehensive expression map of transcription regulators in the adult zebrafish telencephalon reveals distinct neurogenic niches. The Journal of comparative neurology. 523(8):1202-21
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Rodríguez-Aznar, E., Barrallo-Gimeno, A., and Nieto, M.A. (2013) Scratch2 Prevents Cell Cycle Re-Entry by Repressing miR-25 in Postmitotic Primary Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33(12):5095-5105
- Dam, T.M., Kim, H.T., Moon, H.Y., Hwang, K.S., Jeong, Y.M., You, K.H., Lee, J.S., and Kim, C.H. (2011) Neuron-specific expression of Scratch genes during early zebrafish development. Molecules and cells. 31(5):471-475
- Rodríguez-Aznar, E., and Nieto, M.A. (2011) Repression of Puma by Scratch2 is required for neuronal survival during embryonic development. Cell death and differentiation. 18(7):1196-207
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 8 of 8
Show