Gene
six2a
- ID
- ZDB-GENE-010412-1
- Name
- SIX homeobox 2a
- Symbol
- six2a Nomenclature History
- Previous Names
-
- six2.1
- wu:fj04e08
- zgc:91945
- Type
- protein_coding_gene
- Location
- Chr: 13 Mapping Details/Browsers
- Description
- Predicted to enable DNA-binding transcription factor activity, RNA polymerase II-specific and RNA polymerase II cis-regulatory region sequence-specific DNA binding activity. Acts upstream of or within pronephros development. Predicted to be part of transcription regulator complex. Predicted to be active in nucleus. Is expressed in several structures, including head mesenchyme; immature eye; intermediate mesoderm; nervous system; and pronephric tubule. Human ortholog(s) of this gene implicated in renal Wilms' tumor. Orthologous to human SIX2 (SIX homeobox 2).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 11 figures from 4 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- MGC:91945 (13 images)
Wild Type Expression Summary
- All Phenotype Data
- 3 figures from Weber et al., 2008
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Homedomain-like superfamily | Homeobox, conserved site | Homeobox protein SIX1, N-terminal SD domain | Homeodomain | KN homeodomain |
---|---|---|---|---|---|---|---|
UniProtKB:Q98TH1 | InterPro | 288 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-103L3 | ZFIN Curated Data | |
Encodes | EST | fj04e08 | Kobayashi et al., 2001 | |
Encodes | cDNA | MGC:91945 | ZFIN Curated Data | |
Encodes | cDNA | MGC:191825 | ZFIN Curated Data |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_131783 (1) | 1635 nt | ||
Genomic | GenBank:BX571708 (1) | 193197 nt | ||
Polypeptide | UniProtKB:Q98TH1 (1) | 288 aa |
- Belcher, B., Vestal, J., Lane, S., Kell, M., Smith, L., Camarata, T. (2023) The zebrafish paralog six2b is required for early proximal pronephros morphogenesis. Scientific Reports. 13:1969919699
- Song, Y., Chen, W., Zhu, B., Ge, W. (2022) Disruption of Epidermal Growth Factor Receptor but Not EGF Blocks Follicle Activation in Zebrafish Ovary. Frontiers in cell and developmental biology. 9:750888
- Ellingsen, S., Narawane, S., Fjose, A., Verri, T., Rønnestad, I. (2021) The zebrafish cationic amino acid transporter/glycoprotein-associated family: sequence and spatiotemporal distribution during development of the transport system b0,+ (slc3a1/slc7a9). Fish physiology and biochemistry. 47(5):1507-1525
- Tang, Q., Iyer, S., Lobbardi, R., Moore, J.C., Chen, H., Lareau, C., Hebert, C., Shaw, M.L., Neftel, C., Suva, M.L., Ceol, C.J., Bernards, A., Aryee, M., Pinello, L., Drummond, I.A., Langenau, D.M. (2017) Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing. The Journal of experimental medicine. 214(10):2875-2887
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Ott, E., Wendik, B., Srivastava, M., Pacho, F., Töchterle, S., Salvenmoser, W., Meyer, D. (2016) Pronephric tubule morphogenesis in zebrafish depends on Mnx mediated repression of irx1b within the intermediate mesoderm. Developmental Biology. 411(1):101-14
- Gómez-Marín, C., Tena, J.J., Acemel, R.D., López-Mayorga, M., Naranjo, S., de la Calle-Mustienes, E., Maeso, I., Beccari, L., Aneas, I., Vielmas, E., Bovolenta, P., Nobrega, M.A., Carvajal, J., Gómez-Skarmeta, J.L. (2015) Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders. Proceedings of the National Academy of Sciences of the United States of America. 112(24):7542-7
- Ogawa, Y., Shiraki, T., Kojima, D., Fukada, Y. (2015) Homeobox transcription factor Six7 governs expression of green opsin genes in zebrafish. Proceedings. Biological sciences. 282(1812):20150659
- Zhang, H., Wang, X., Lv, K., Gao, S., Wang, G., Fan, C., Zhang, X.A., Yan, J. (2015) Time Point-based Integrative Analyses of Deep-transcriptome Identify Four Signal Pathways in Blastemal Regeneration of Zebrafish Lower Jaw. Stem cells (Dayton, Ohio). 33(3):806-18
- Bessarab, D.A., Chong, S.W., Srinivas, B.P., and Korzh, V. (2008) Six1a is required for the onset of fast muscle differentiation in zebrafish. Developmental Biology. 323(2):216-228
1 - 10 of 13
Show